1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
---
:name: clacon
:md5sum: a83f242544259a16370667c7f930d723
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- v:
:type: complex
:intent: workspace
:dims:
- n
- x:
:type: complex
:intent: input/output
:dims:
- n
- est:
:type: real
:intent: input/output
- kase:
:type: integer
:intent: input/output
:substitutions: {}
:fortran_help: " SUBROUTINE CLACON( N, V, X, EST, KASE )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CLACON estimates the 1-norm of a square, complex matrix A.\n\
* Reverse communication is used for evaluating matrix-vector products.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix. N >= 1.\n\
*\n\
* V (workspace) COMPLEX array, dimension (N)\n\
* On the final return, V = A*W, where EST = norm(V)/norm(W)\n\
* (W is not returned).\n\
*\n\
* X (input/output) COMPLEX array, dimension (N)\n\
* On an intermediate return, X should be overwritten by\n\
* A * X, if KASE=1,\n\
* A' * X, if KASE=2,\n\
* where A' is the conjugate transpose of A, and CLACON must be\n\
* re-called with all the other parameters unchanged.\n\
*\n\
* EST (input/output) REAL\n\
* On entry with KASE = 1 or 2 and JUMP = 3, EST should be\n\
* unchanged from the previous call to CLACON.\n\
* On exit, EST is an estimate (a lower bound) for norm(A). \n\
*\n\
* KASE (input/output) INTEGER\n\
* On the initial call to CLACON, KASE should be 0.\n\
* On an intermediate return, KASE will be 1 or 2, indicating\n\
* whether X should be overwritten by A * X or A' * X.\n\
* On the final return from CLACON, KASE will again be 0.\n\
*\n\n\
* Further Details\n\
* ======= =======\n\
*\n\
* Contributed by Nick Higham, University of Manchester.\n\
* Originally named CONEST, dated March 16, 1988.\n\
*\n\
* Reference: N.J. Higham, \"FORTRAN codes for estimating the one-norm of\n\
* a real or complex matrix, with applications to condition estimation\",\n\
* ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.\n\
*\n\
* Last modified: April, 1999\n\
*\n\
* =====================================================================\n\
*\n"
|