1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
---
:name: claed0
:md5sum: 83b18987c9b3313733de29e1dea9bdad
:category: :subroutine
:arguments:
- qsiz:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- d:
:type: real
:intent: input/output
:dims:
- n
- e:
:type: real
:intent: input/output
:dims:
- n-1
- q:
:type: complex
:intent: input/output
:dims:
- ldq
- n
- ldq:
:type: integer
:intent: input
- qstore:
:type: complex
:intent: workspace
:dims:
- ldqs
- n
- ldqs:
:type: integer
:intent: input
- rwork:
:type: real
:intent: workspace
:dims:
- 1 + 3*n + 2*n*LG(n) + 3*pow(n,2)
- iwork:
:type: integer
:intent: workspace
:dims:
- 6 + 6*n + 5*n*LG(n)
- info:
:type: integer
:intent: output
:substitutions:
ldqs: MAX(1,n)
:fortran_help: " SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* Using the divide and conquer method, CLAED0 computes all eigenvalues\n\
* of a symmetric tridiagonal matrix which is one diagonal block of\n\
* those from reducing a dense or band Hermitian matrix and\n\
* corresponding eigenvectors of the dense or band matrix.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* QSIZ (input) INTEGER\n\
* The dimension of the unitary matrix used to reduce\n\
* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.\n\
*\n\
* N (input) INTEGER\n\
* The dimension of the symmetric tridiagonal matrix. N >= 0.\n\
*\n\
* D (input/output) REAL array, dimension (N)\n\
* On entry, the diagonal elements of the tridiagonal matrix.\n\
* On exit, the eigenvalues in ascending order.\n\
*\n\
* E (input/output) REAL array, dimension (N-1)\n\
* On entry, the off-diagonal elements of the tridiagonal matrix.\n\
* On exit, E has been destroyed.\n\
*\n\
* Q (input/output) COMPLEX array, dimension (LDQ,N)\n\
* On entry, Q must contain an QSIZ x N matrix whose columns\n\
* unitarily orthonormal. It is a part of the unitary matrix\n\
* that reduces the full dense Hermitian matrix to a\n\
* (reducible) symmetric tridiagonal matrix.\n\
*\n\
* LDQ (input) INTEGER\n\
* The leading dimension of the array Q. LDQ >= max(1,N).\n\
*\n\
* IWORK (workspace) INTEGER array,\n\
* the dimension of IWORK must be at least\n\
* 6 + 6*N + 5*N*lg N\n\
* ( lg( N ) = smallest integer k\n\
* such that 2^k >= N )\n\
*\n\
* RWORK (workspace) REAL array,\n\
* dimension (1 + 3*N + 2*N*lg N + 3*N**2)\n\
* ( lg( N ) = smallest integer k\n\
* such that 2^k >= N )\n\
*\n\
* QSTORE (workspace) COMPLEX array, dimension (LDQS, N)\n\
* Used to store parts of\n\
* the eigenvector matrix when the updating matrix multiplies\n\
* take place.\n\
*\n\
* LDQS (input) INTEGER\n\
* The leading dimension of the array QSTORE.\n\
* LDQS >= max(1,N).\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: The algorithm failed to compute an eigenvalue while\n\
* working on the submatrix lying in rows and columns\n\
* INFO/(N+1) through mod(INFO,N+1).\n\
*\n\n\
* =====================================================================\n\
*\n\
* Warning: N could be as big as QSIZ!\n\
*\n"
|