File: claed0

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (121 lines) | stat: -rwxr-xr-x 3,813 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
--- 
:name: claed0
:md5sum: 83b18987c9b3313733de29e1dea9bdad
:category: :subroutine
:arguments: 
- qsiz: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- d: 
    :type: real
    :intent: input/output
    :dims: 
    - n
- e: 
    :type: real
    :intent: input/output
    :dims: 
    - n-1
- q: 
    :type: complex
    :intent: input/output
    :dims: 
    - ldq
    - n
- ldq: 
    :type: integer
    :intent: input
- qstore: 
    :type: complex
    :intent: workspace
    :dims: 
    - ldqs
    - n
- ldqs: 
    :type: integer
    :intent: input
- rwork: 
    :type: real
    :intent: workspace
    :dims: 
    - 1 + 3*n + 2*n*LG(n) + 3*pow(n,2)
- iwork: 
    :type: integer
    :intent: workspace
    :dims: 
    - 6 + 6*n + 5*n*LG(n)
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldqs: MAX(1,n)
:fortran_help: "      SUBROUTINE CLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  Using the divide and conquer method, CLAED0 computes all eigenvalues\n\
  *  of a symmetric tridiagonal matrix which is one diagonal block of\n\
  *  those from reducing a dense or band Hermitian matrix and\n\
  *  corresponding eigenvectors of the dense or band matrix.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  QSIZ   (input) INTEGER\n\
  *         The dimension of the unitary matrix used to reduce\n\
  *         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.\n\
  *\n\
  *  N      (input) INTEGER\n\
  *         The dimension of the symmetric tridiagonal matrix.  N >= 0.\n\
  *\n\
  *  D      (input/output) REAL array, dimension (N)\n\
  *         On entry, the diagonal elements of the tridiagonal matrix.\n\
  *         On exit, the eigenvalues in ascending order.\n\
  *\n\
  *  E      (input/output) REAL array, dimension (N-1)\n\
  *         On entry, the off-diagonal elements of the tridiagonal matrix.\n\
  *         On exit, E has been destroyed.\n\
  *\n\
  *  Q      (input/output) COMPLEX array, dimension (LDQ,N)\n\
  *         On entry, Q must contain an QSIZ x N matrix whose columns\n\
  *         unitarily orthonormal. It is a part of the unitary matrix\n\
  *         that reduces the full dense Hermitian matrix to a\n\
  *         (reducible) symmetric tridiagonal matrix.\n\
  *\n\
  *  LDQ    (input) INTEGER\n\
  *         The leading dimension of the array Q.  LDQ >= max(1,N).\n\
  *\n\
  *  IWORK  (workspace) INTEGER array,\n\
  *         the dimension of IWORK must be at least\n\
  *                      6 + 6*N + 5*N*lg N\n\
  *                      ( lg( N ) = smallest integer k\n\
  *                                  such that 2^k >= N )\n\
  *\n\
  *  RWORK  (workspace) REAL array,\n\
  *                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)\n\
  *                        ( lg( N ) = smallest integer k\n\
  *                                    such that 2^k >= N )\n\
  *\n\
  *  QSTORE (workspace) COMPLEX array, dimension (LDQS, N)\n\
  *         Used to store parts of\n\
  *         the eigenvector matrix when the updating matrix multiplies\n\
  *         take place.\n\
  *\n\
  *  LDQS   (input) INTEGER\n\
  *         The leading dimension of the array QSTORE.\n\
  *         LDQS >= max(1,N).\n\
  *\n\
  *  INFO   (output) INTEGER\n\
  *          = 0:  successful exit.\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *          > 0:  The algorithm failed to compute an eigenvalue while\n\
  *                working on the submatrix lying in rows and columns\n\
  *                INFO/(N+1) through mod(INFO,N+1).\n\
  *\n\n\
  *  =====================================================================\n\
  *\n\
  *  Warning:      N could be as big as QSIZ!\n\
  *\n"