File: claev2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (83 lines) | stat: -rwxr-xr-x 2,491 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
--- 
:name: claev2
:md5sum: c17a6c0ba6505716c01d705bebc81800
:category: :subroutine
:arguments: 
- a: 
    :type: complex
    :intent: input
- b: 
    :type: complex
    :intent: input
- c: 
    :type: complex
    :intent: input
- rt1: 
    :type: real
    :intent: output
- rt2: 
    :type: real
    :intent: output
- cs1: 
    :type: real
    :intent: output
- sn1: 
    :type: complex
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix\n\
  *     [  A         B  ]\n\
  *     [  CONJG(B)  C  ].\n\
  *  On return, RT1 is the eigenvalue of larger absolute value, RT2 is the\n\
  *  eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right\n\
  *  eigenvector for RT1, giving the decomposition\n\
  *\n\
  *  [ CS1  CONJG(SN1) ] [    A     B ] [ CS1 -CONJG(SN1) ] = [ RT1  0  ]\n\
  *  [-SN1     CS1     ] [ CONJG(B) C ] [ SN1     CS1     ]   [  0  RT2 ].\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  A      (input) COMPLEX\n\
  *         The (1,1) element of the 2-by-2 matrix.\n\
  *\n\
  *  B      (input) COMPLEX\n\
  *         The (1,2) element and the conjugate of the (2,1) element of\n\
  *         the 2-by-2 matrix.\n\
  *\n\
  *  C      (input) COMPLEX\n\
  *         The (2,2) element of the 2-by-2 matrix.\n\
  *\n\
  *  RT1    (output) REAL\n\
  *         The eigenvalue of larger absolute value.\n\
  *\n\
  *  RT2    (output) REAL\n\
  *         The eigenvalue of smaller absolute value.\n\
  *\n\
  *  CS1    (output) REAL\n\
  *  SN1    (output) COMPLEX\n\
  *         The vector (CS1, SN1) is a unit right eigenvector for RT1.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  RT1 is accurate to a few ulps barring over/underflow.\n\
  *\n\
  *  RT2 may be inaccurate if there is massive cancellation in the\n\
  *  determinant A*C-B*B; higher precision or correctly rounded or\n\
  *  correctly truncated arithmetic would be needed to compute RT2\n\
  *  accurately in all cases.\n\
  *\n\
  *  CS1 and SN1 are accurate to a few ulps barring over/underflow.\n\
  *\n\
  *  Overflow is possible only if RT1 is within a factor of 5 of overflow.\n\
  *  Underflow is harmless if the input data is 0 or exceeds\n\
  *     underflow_threshold / macheps.\n\
  *\n\
  * =====================================================================\n\
  *\n"