1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
---
:name: clagtm
:md5sum: 76bb9071a03ce8f5aeaa641ddf9532e8
:category: :subroutine
:arguments:
- trans:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- alpha:
:type: real
:intent: input
- dl:
:type: complex
:intent: input
:dims:
- n-1
- d:
:type: complex
:intent: input
:dims:
- n
- du:
:type: complex
:intent: input
:dims:
- n-1
- x:
:type: complex
:intent: input
:dims:
- ldx
- nrhs
- ldx:
:type: integer
:intent: input
- beta:
:type: real
:intent: input
- b:
:type: complex
:intent: input/output
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
:substitutions: {}
:fortran_help: " SUBROUTINE CLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CLAGTM performs a matrix-vector product of the form\n\
*\n\
* B := alpha * A * X + beta * B\n\
*\n\
* where A is a tridiagonal matrix of order N, B and X are N by NRHS\n\
* matrices, and alpha and beta are real scalars, each of which may be\n\
* 0., 1., or -1.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* Specifies the operation applied to A.\n\
* = 'N': No transpose, B := alpha * A * X + beta * B\n\
* = 'T': Transpose, B := alpha * A**T * X + beta * B\n\
* = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrices X and B.\n\
*\n\
* ALPHA (input) REAL\n\
* The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,\n\
* it is assumed to be 0.\n\
*\n\
* DL (input) COMPLEX array, dimension (N-1)\n\
* The (n-1) sub-diagonal elements of T.\n\
*\n\
* D (input) COMPLEX array, dimension (N)\n\
* The diagonal elements of T.\n\
*\n\
* DU (input) COMPLEX array, dimension (N-1)\n\
* The (n-1) super-diagonal elements of T.\n\
*\n\
* X (input) COMPLEX array, dimension (LDX,NRHS)\n\
* The N by NRHS matrix X.\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X. LDX >= max(N,1).\n\
*\n\
* BETA (input) REAL\n\
* The scalar beta. BETA must be 0., 1., or -1.; otherwise,\n\
* it is assumed to be 1.\n\
*\n\
* B (input/output) COMPLEX array, dimension (LDB,NRHS)\n\
* On entry, the N by NRHS matrix B.\n\
* On exit, B is overwritten by the matrix expression\n\
* B := alpha * A * X + beta * B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(N,1).\n\
*\n\n\
* =====================================================================\n\
*\n"
|