File: claic1

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (101 lines) | stat: -rwxr-xr-x 2,705 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
--- 
:name: claic1
:md5sum: 22926ad0c8db95eafc17cf2632e11865
:category: :subroutine
:arguments: 
- job: 
    :type: integer
    :intent: input
- j: 
    :type: integer
    :intent: input
- x: 
    :type: complex
    :intent: input
    :dims: 
    - j
- sest: 
    :type: real
    :intent: input
- w: 
    :type: complex
    :intent: input
    :dims: 
    - j
- gamma: 
    :type: complex
    :intent: input
- sestpr: 
    :type: real
    :intent: output
- s: 
    :type: complex
    :intent: output
- c: 
    :type: complex
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE CLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CLAIC1 applies one step of incremental condition estimation in\n\
  *  its simplest version:\n\
  *\n\
  *  Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j\n\
  *  lower triangular matrix L, such that\n\
  *           twonorm(L*x) = sest\n\
  *  Then CLAIC1 computes sestpr, s, c such that\n\
  *  the vector\n\
  *                  [ s*x ]\n\
  *           xhat = [  c  ]\n\
  *  is an approximate singular vector of\n\
  *                  [ L     0  ]\n\
  *           Lhat = [ w' gamma ]\n\
  *  in the sense that\n\
  *           twonorm(Lhat*xhat) = sestpr.\n\
  *\n\
  *  Depending on JOB, an estimate for the largest or smallest singular\n\
  *  value is computed.\n\
  *\n\
  *  Note that [s c]' and sestpr**2 is an eigenpair of the system\n\
  *\n\
  *      diag(sest*sest, 0) + [alpha  gamma] * [ conjg(alpha) ]\n\
  *                                            [ conjg(gamma) ]\n\
  *\n\
  *  where  alpha =  conjg(x)'*w.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOB     (input) INTEGER\n\
  *          = 1: an estimate for the largest singular value is computed.\n\
  *          = 2: an estimate for the smallest singular value is computed.\n\
  *\n\
  *  J       (input) INTEGER\n\
  *          Length of X and W\n\
  *\n\
  *  X       (input) COMPLEX array, dimension (J)\n\
  *          The j-vector x.\n\
  *\n\
  *  SEST    (input) REAL\n\
  *          Estimated singular value of j by j matrix L\n\
  *\n\
  *  W       (input) COMPLEX array, dimension (J)\n\
  *          The j-vector w.\n\
  *\n\
  *  GAMMA   (input) COMPLEX\n\
  *          The diagonal element gamma.\n\
  *\n\
  *  SESTPR  (output) REAL\n\
  *          Estimated singular value of (j+1) by (j+1) matrix Lhat.\n\
  *\n\
  *  S       (output) COMPLEX\n\
  *          Sine needed in forming xhat.\n\
  *\n\
  *  C       (output) COMPLEX\n\
  *          Cosine needed in forming xhat.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"