File: claqp2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (115 lines) | stat: -rwxr-xr-x 3,496 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
--- 
:name: claqp2
:md5sum: 44ab7cf5adb154df3f069f835f338c36
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- offset: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- jpvt: 
    :type: integer
    :intent: input/output
    :dims: 
    - n
- tau: 
    :type: complex
    :intent: output
    :dims: 
    - MIN(m,n)
- vn1: 
    :type: real
    :intent: input/output
    :dims: 
    - n
- vn2: 
    :type: real
    :intent: input/output
    :dims: 
    - n
- work: 
    :type: complex
    :intent: workspace
    :dims: 
    - n
:substitutions: {}

:fortran_help: "      SUBROUTINE CLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, WORK )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CLAQP2 computes a QR factorization with column pivoting of\n\
  *  the block A(OFFSET+1:M,1:N).\n\
  *  The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A. M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix A. N >= 0.\n\
  *\n\
  *  OFFSET  (input) INTEGER\n\
  *          The number of rows of the matrix A that must be pivoted\n\
  *          but no factorized. OFFSET >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX array, dimension (LDA,N)\n\
  *          On entry, the M-by-N matrix A.\n\
  *          On exit, the upper triangle of block A(OFFSET+1:M,1:N) is \n\
  *          the triangular factor obtained; the elements in block\n\
  *          A(OFFSET+1:M,1:N) below the diagonal, together with the\n\
  *          array TAU, represent the orthogonal matrix Q as a product of\n\
  *          elementary reflectors. Block A(1:OFFSET,1:N) has been\n\
  *          accordingly pivoted, but no factorized.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A. LDA >= max(1,M).\n\
  *\n\
  *  JPVT    (input/output) INTEGER array, dimension (N)\n\
  *          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted\n\
  *          to the front of A*P (a leading column); if JPVT(i) = 0,\n\
  *          the i-th column of A is a free column.\n\
  *          On exit, if JPVT(i) = k, then the i-th column of A*P\n\
  *          was the k-th column of A.\n\
  *\n\
  *  TAU     (output) COMPLEX array, dimension (min(M,N))\n\
  *          The scalar factors of the elementary reflectors.\n\
  *\n\
  *  VN1     (input/output) REAL array, dimension (N)\n\
  *          The vector with the partial column norms.\n\
  *\n\
  *  VN2     (input/output) REAL array, dimension (N)\n\
  *          The vector with the exact column norms.\n\
  *\n\
  *  WORK    (workspace) COMPLEX array, dimension (N)\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain\n\
  *    X. Sun, Computer Science Dept., Duke University, USA\n\
  *\n\
  *  Partial column norm updating strategy modified by\n\
  *    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,\n\
  *    University of Zagreb, Croatia.\n\
  *     June 2010\n\
  *  For more details see LAPACK Working Note 176.\n\
  *  =====================================================================\n\
  *\n"