File: claqr4

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (203 lines) | stat: -rwxr-xr-x 7,923 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
--- 
:name: claqr4
:md5sum: 234329047676594dccc0a2de8eb860f7
:category: :subroutine
:arguments: 
- wantt: 
    :type: logical
    :intent: input
- wantz: 
    :type: logical
    :intent: input
- n: 
    :type: integer
    :intent: input
- ilo: 
    :type: integer
    :intent: input
- ihi: 
    :type: integer
    :intent: input
- h: 
    :type: complex
    :intent: input/output
    :dims: 
    - ldh
    - n
- ldh: 
    :type: integer
    :intent: input
- w: 
    :type: complex
    :intent: output
    :dims: 
    - n
- iloz: 
    :type: integer
    :intent: input
- ihiz: 
    :type: integer
    :intent: input
- z: 
    :type: complex
    :intent: input/output
    :dims: 
    - ldz
    - ihi
- ldz: 
    :type: integer
    :intent: input
- work: 
    :type: complex
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE CLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )\n\n\
  *     Purpose\n\
  *     =======\n\
  *\n\
  *     CLAQR4 computes the eigenvalues of a Hessenberg matrix H\n\
  *     and, optionally, the matrices T and Z from the Schur decomposition\n\
  *     H = Z T Z**H, where T is an upper triangular matrix (the\n\
  *     Schur form), and Z is the unitary matrix of Schur vectors.\n\
  *\n\
  *     Optionally Z may be postmultiplied into an input unitary\n\
  *     matrix Q so that this routine can give the Schur factorization\n\
  *     of a matrix A which has been reduced to the Hessenberg form H\n\
  *     by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.\n\
  *\n\n\
  *     Arguments\n\
  *     =========\n\
  *\n\
  *     WANTT   (input) LOGICAL\n\
  *          = .TRUE. : the full Schur form T is required;\n\
  *          = .FALSE.: only eigenvalues are required.\n\
  *\n\
  *     WANTZ   (input) LOGICAL\n\
  *          = .TRUE. : the matrix of Schur vectors Z is required;\n\
  *          = .FALSE.: Schur vectors are not required.\n\
  *\n\
  *     N     (input) INTEGER\n\
  *           The order of the matrix H.  N .GE. 0.\n\
  *\n\
  *     ILO   (input) INTEGER\n\
  *     IHI   (input) INTEGER\n\
  *           It is assumed that H is already upper triangular in rows\n\
  *           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,\n\
  *           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a\n\
  *           previous call to CGEBAL, and then passed to CGEHRD when the\n\
  *           matrix output by CGEBAL is reduced to Hessenberg form.\n\
  *           Otherwise, ILO and IHI should be set to 1 and N,\n\
  *           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.\n\
  *           If N = 0, then ILO = 1 and IHI = 0.\n\
  *\n\
  *     H     (input/output) COMPLEX array, dimension (LDH,N)\n\
  *           On entry, the upper Hessenberg matrix H.\n\
  *           On exit, if INFO = 0 and WANTT is .TRUE., then H\n\
  *           contains the upper triangular matrix T from the Schur\n\
  *           decomposition (the Schur form). If INFO = 0 and WANT is\n\
  *           .FALSE., then the contents of H are unspecified on exit.\n\
  *           (The output value of H when INFO.GT.0 is given under the\n\
  *           description of INFO below.)\n\
  *\n\
  *           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and\n\
  *           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.\n\
  *\n\
  *     LDH   (input) INTEGER\n\
  *           The leading dimension of the array H. LDH .GE. max(1,N).\n\
  *\n\
  *     W        (output) COMPLEX array, dimension (N)\n\
  *           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored\n\
  *           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are\n\
  *           stored in the same order as on the diagonal of the Schur\n\
  *           form returned in H, with W(i) = H(i,i).\n\
  *\n\
  *     Z     (input/output) COMPLEX array, dimension (LDZ,IHI)\n\
  *           If WANTZ is .FALSE., then Z is not referenced.\n\
  *           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is\n\
  *           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the\n\
  *           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).\n\
  *           (The output value of Z when INFO.GT.0 is given under\n\
  *           the description of INFO below.)\n\
  *\n\
  *     LDZ   (input) INTEGER\n\
  *           The leading dimension of the array Z.  if WANTZ is .TRUE.\n\
  *           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.\n\
  *\n\
  *     WORK  (workspace/output) COMPLEX array, dimension LWORK\n\
  *           On exit, if LWORK = -1, WORK(1) returns an estimate of\n\
  *           the optimal value for LWORK.\n\
  *\n\
  *     LWORK (input) INTEGER\n\
  *           The dimension of the array WORK.  LWORK .GE. max(1,N)\n\
  *           is sufficient, but LWORK typically as large as 6*N may\n\
  *           be required for optimal performance.  A workspace query\n\
  *           to determine the optimal workspace size is recommended.\n\
  *\n\
  *           If LWORK = -1, then CLAQR4 does a workspace query.\n\
  *           In this case, CLAQR4 checks the input parameters and\n\
  *           estimates the optimal workspace size for the given\n\
  *           values of N, ILO and IHI.  The estimate is returned\n\
  *           in WORK(1).  No error message related to LWORK is\n\
  *           issued by XERBLA.  Neither H nor Z are accessed.\n\
  *\n\
  *\n\
  *     INFO  (output) INTEGER\n\
  *             =  0:  successful exit\n\
  *           .GT. 0:  if INFO = i, CLAQR4 failed to compute all of\n\
  *                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR\n\
  *                and WI contain those eigenvalues which have been\n\
  *                successfully computed.  (Failures are rare.)\n\
  *\n\
  *                If INFO .GT. 0 and WANT is .FALSE., then on exit,\n\
  *                the remaining unconverged eigenvalues are the eigen-\n\
  *                values of the upper Hessenberg matrix rows and\n\
  *                columns ILO through INFO of the final, output\n\
  *                value of H.\n\
  *\n\
  *                If INFO .GT. 0 and WANTT is .TRUE., then on exit\n\
  *\n\
  *           (*)  (initial value of H)*U  = U*(final value of H)\n\
  *\n\
  *                where U is a unitary matrix.  The final\n\
  *                value of  H is upper Hessenberg and triangular in\n\
  *                rows and columns INFO+1 through IHI.\n\
  *\n\
  *                If INFO .GT. 0 and WANTZ is .TRUE., then on exit\n\
  *\n\
  *                  (final value of Z(ILO:IHI,ILOZ:IHIZ)\n\
  *                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U\n\
  *\n\
  *                where U is the unitary matrix in (*) (regard-\n\
  *                less of the value of WANTT.)\n\
  *\n\
  *                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not\n\
  *                accessed.\n\
  *\n\n\
  *     ================================================================\n\
  *     Based on contributions by\n\
  *        Karen Braman and Ralph Byers, Department of Mathematics,\n\
  *        University of Kansas, USA\n\
  *\n\
  *     ================================================================\n\
  *     References:\n\
  *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR\n\
  *       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3\n\
  *       Performance, SIAM Journal of Matrix Analysis, volume 23, pages\n\
  *       929--947, 2002.\n\
  *\n\
  *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR\n\
  *       Algorithm Part II: Aggressive Early Deflation, SIAM Journal\n\
  *       of Matrix Analysis, volume 23, pages 948--973, 2002.\n\
  *\n\
  *     ================================================================\n"