File: claqsp

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (89 lines) | stat: -rwxr-xr-x 2,767 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
--- 
:name: claqsp
:md5sum: 8848a8c7da22b13fd5e2a4b1707cf25c
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- ap: 
    :type: complex
    :intent: input/output
    :dims: 
    - n*(n+1)/2
- s: 
    :type: real
    :intent: input
    :dims: 
    - n
- scond: 
    :type: real
    :intent: input
- amax: 
    :type: real
    :intent: input
- equed: 
    :type: char
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE CLAQSP( UPLO, N, AP, S, SCOND, AMAX, EQUED )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CLAQSP equilibrates a symmetric matrix A using the scaling factors\n\
  *  in the vector S.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          Specifies whether the upper or lower triangular part of the\n\
  *          symmetric matrix A is stored.\n\
  *          = 'U':  Upper triangular\n\
  *          = 'L':  Lower triangular\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2)\n\
  *          On entry, the upper or lower triangle of the symmetric matrix\n\
  *          A, packed columnwise in a linear array.  The j-th column of A\n\
  *          is stored in the array AP as follows:\n\
  *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
  *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.\n\
  *\n\
  *          On exit, the equilibrated matrix:  diag(S) * A * diag(S), in\n\
  *          the same storage format as A.\n\
  *\n\
  *  S       (input) REAL array, dimension (N)\n\
  *          The scale factors for A.\n\
  *\n\
  *  SCOND   (input) REAL\n\
  *          Ratio of the smallest S(i) to the largest S(i).\n\
  *\n\
  *  AMAX    (input) REAL\n\
  *          Absolute value of largest matrix entry.\n\
  *\n\
  *  EQUED   (output) CHARACTER*1\n\
  *          Specifies whether or not equilibration was done.\n\
  *          = 'N':  No equilibration.\n\
  *          = 'Y':  Equilibration was done, i.e., A has been replaced by\n\
  *                  diag(S) * A * diag(S).\n\
  *\n\
  *  Internal Parameters\n\
  *  ===================\n\
  *\n\
  *  THRESH is a threshold value used to decide if scaling should be done\n\
  *  based on the ratio of the scaling factors.  If SCOND < THRESH,\n\
  *  scaling is done.\n\
  *\n\
  *  LARGE and SMALL are threshold values used to decide if scaling should\n\
  *  be done based on the absolute size of the largest matrix element.\n\
  *  If AMAX > LARGE or AMAX < SMALL, scaling is done.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"