File: clar2v

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (88 lines) | stat: -rwxr-xr-x 2,668 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
--- 
:name: clar2v
:md5sum: 7ed20259419e6c0e94185c5273a1f5b6
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- x: 
    :type: complex
    :intent: input/output
    :dims: 
    - 1+(n-1)*incx
- y: 
    :type: complex
    :intent: input/output
    :dims: 
    - 1+(n-1)*incx
- z: 
    :type: complex
    :intent: input/output
    :dims: 
    - 1+(n-1)*incx
- incx: 
    :type: integer
    :intent: input
- c: 
    :type: real
    :intent: input
    :dims: 
    - 1+(n-1)*incc
- s: 
    :type: complex
    :intent: input
    :dims: 
    - 1+(n-1)*incc
- incc: 
    :type: integer
    :intent: input
:substitutions: {}

:fortran_help: "      SUBROUTINE CLAR2V( N, X, Y, Z, INCX, C, S, INCC )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CLAR2V applies a vector of complex plane rotations with real cosines\n\
  *  from both sides to a sequence of 2-by-2 complex Hermitian matrices,\n\
  *  defined by the elements of the vectors x, y and z. For i = 1,2,...,n\n\
  *\n\
  *     (       x(i)  z(i) ) :=\n\
  *     ( conjg(z(i)) y(i) )\n\
  *\n\
  *       (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )\n\
  *       ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)        c(i)  )\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of plane rotations to be applied.\n\
  *\n\
  *  X       (input/output) COMPLEX array, dimension (1+(N-1)*INCX)\n\
  *          The vector x; the elements of x are assumed to be real.\n\
  *\n\
  *  Y       (input/output) COMPLEX array, dimension (1+(N-1)*INCX)\n\
  *          The vector y; the elements of y are assumed to be real.\n\
  *\n\
  *  Z       (input/output) COMPLEX array, dimension (1+(N-1)*INCX)\n\
  *          The vector z.\n\
  *\n\
  *  INCX    (input) INTEGER\n\
  *          The increment between elements of X, Y and Z. INCX > 0.\n\
  *\n\
  *  C       (input) REAL array, dimension (1+(N-1)*INCC)\n\
  *          The cosines of the plane rotations.\n\
  *\n\
  *  S       (input) COMPLEX array, dimension (1+(N-1)*INCC)\n\
  *          The sines of the plane rotations.\n\
  *\n\
  *  INCC    (input) INTEGER\n\
  *          The increment between elements of C and S. INCC > 0.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n\
  *     .. Local Scalars ..\n      INTEGER            I, IC, IX\n      REAL               CI, SII, SIR, T1I, T1R, T5, T6, XI, YI, ZII,\n     $                   ZIR\n      COMPLEX            SI, T2, T3, T4, ZI\n\
  *     ..\n\
  *     .. Intrinsic Functions ..\n      INTRINSIC          AIMAG, CMPLX, CONJG, REAL\n\
  *     ..\n"