1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
---
:name: clarf
:md5sum: 7cf32c88d2dc45466c3c3062072fb5bb
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- v:
:type: complex
:intent: input
:dims:
- 1 + (m-1)*abs(incv)
- incv:
:type: integer
:intent: input
- tau:
:type: complex
:intent: input
- c:
:type: complex
:intent: input/output
:dims:
- ldc
- n
- ldc:
:type: integer
:intent: input
- work:
:type: complex
:intent: workspace
:dims:
- "lsame_(&side,\"L\") ? n : lsame_(&side,\"R\") ? m : 0"
:substitutions: {}
:fortran_help: " SUBROUTINE CLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CLARF applies a complex elementary reflector H to a complex M-by-N\n\
* matrix C, from either the left or the right. H is represented in the\n\
* form\n\
*\n\
* H = I - tau * v * v'\n\
*\n\
* where tau is a complex scalar and v is a complex vector.\n\
*\n\
* If tau = 0, then H is taken to be the unit matrix.\n\
*\n\
* To apply H' (the conjugate transpose of H), supply conjg(tau) instead\n\
* tau.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'L': form H * C\n\
* = 'R': form C * H\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix C.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix C.\n\
*\n\
* V (input) COMPLEX array, dimension\n\
* (1 + (M-1)*abs(INCV)) if SIDE = 'L'\n\
* or (1 + (N-1)*abs(INCV)) if SIDE = 'R'\n\
* The vector v in the representation of H. V is not used if\n\
* TAU = 0.\n\
*\n\
* INCV (input) INTEGER\n\
* The increment between elements of v. INCV <> 0.\n\
*\n\
* TAU (input) COMPLEX\n\
* The value tau in the representation of H.\n\
*\n\
* C (input/output) COMPLEX array, dimension (LDC,N)\n\
* On entry, the M-by-N matrix C.\n\
* On exit, C is overwritten by the matrix H * C if SIDE = 'L',\n\
* or C * H if SIDE = 'R'.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C. LDC >= max(1,M).\n\
*\n\
* WORK (workspace) COMPLEX array, dimension\n\
* (N) if SIDE = 'L'\n\
* or (M) if SIDE = 'R'\n\
*\n\n\
* =====================================================================\n\
*\n"
|