1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
---
:name: clarfb
:md5sum: 297dbf123408181db136925cb1ae5c61
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- direct:
:type: char
:intent: input
- storev:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- k:
:type: integer
:intent: input
- v:
:type: complex
:intent: input
:dims:
- ldv
- k
- ldv:
:type: integer
:intent: input
- t:
:type: complex
:intent: input
:dims:
- ldt
- k
- ldt:
:type: integer
:intent: input
- c:
:type: complex
:intent: input/output
:dims:
- ldc
- n
- ldc:
:type: integer
:intent: input
- work:
:type: complex
:intent: workspace
:dims:
- ldwork
- k
- ldwork:
:type: integer
:intent: input
:substitutions:
ldwork: "MAX(1,n) ? side = 'l' : MAX(1,m) ? side = 'r' : 0"
:fortran_help: " SUBROUTINE CLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CLARFB applies a complex block reflector H or its transpose H' to a\n\
* complex M-by-N matrix C, from either the left or the right.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'L': apply H or H' from the Left\n\
* = 'R': apply H or H' from the Right\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* = 'N': apply H (No transpose)\n\
* = 'C': apply H' (Conjugate transpose)\n\
*\n\
* DIRECT (input) CHARACTER*1\n\
* Indicates how H is formed from a product of elementary\n\
* reflectors\n\
* = 'F': H = H(1) H(2) . . . H(k) (Forward)\n\
* = 'B': H = H(k) . . . H(2) H(1) (Backward)\n\
*\n\
* STOREV (input) CHARACTER*1\n\
* Indicates how the vectors which define the elementary\n\
* reflectors are stored:\n\
* = 'C': Columnwise\n\
* = 'R': Rowwise\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix C.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix C.\n\
*\n\
* K (input) INTEGER\n\
* The order of the matrix T (= the number of elementary\n\
* reflectors whose product defines the block reflector).\n\
*\n\
* V (input) COMPLEX array, dimension\n\
* (LDV,K) if STOREV = 'C'\n\
* (LDV,M) if STOREV = 'R' and SIDE = 'L'\n\
* (LDV,N) if STOREV = 'R' and SIDE = 'R'\n\
* The matrix V. See further details.\n\
*\n\
* LDV (input) INTEGER\n\
* The leading dimension of the array V.\n\
* If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);\n\
* if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);\n\
* if STOREV = 'R', LDV >= K.\n\
*\n\
* T (input) COMPLEX array, dimension (LDT,K)\n\
* The triangular K-by-K matrix T in the representation of the\n\
* block reflector.\n\
*\n\
* LDT (input) INTEGER\n\
* The leading dimension of the array T. LDT >= K.\n\
*\n\
* C (input/output) COMPLEX array, dimension (LDC,N)\n\
* On entry, the M-by-N matrix C.\n\
* On exit, C is overwritten by H*C or H'*C or C*H or C*H'.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C. LDC >= max(1,M).\n\
*\n\
* WORK (workspace) COMPLEX array, dimension (LDWORK,K)\n\
*\n\
* LDWORK (input) INTEGER\n\
* The leading dimension of the array WORK.\n\
* If SIDE = 'L', LDWORK >= max(1,N);\n\
* if SIDE = 'R', LDWORK >= max(1,M).\n\
*\n\n\
* =====================================================================\n\
*\n"
|