File: clasr

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (169 lines) | stat: -rwxr-xr-x 6,151 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
--- 
:name: clasr
:md5sum: 9edeb6dbb98dd9c3e28985b4bc103c42
:category: :subroutine
:arguments: 
- side: 
    :type: char
    :intent: input
- pivot: 
    :type: char
    :intent: input
- direct: 
    :type: char
    :intent: input
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- c: 
    :type: real
    :intent: input
    :dims: 
    - m-1
- s: 
    :type: real
    :intent: input
    :dims: 
    - m-1
- a: 
    :type: complex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
:substitutions: {}

:fortran_help: "      SUBROUTINE CLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CLASR applies a sequence of real plane rotations to a complex matrix\n\
  *  A, from either the left or the right.\n\
  *\n\
  *  When SIDE = 'L', the transformation takes the form\n\
  *\n\
  *     A := P*A\n\
  *\n\
  *  and when SIDE = 'R', the transformation takes the form\n\
  *\n\
  *     A := A*P**T\n\
  *\n\
  *  where P is an orthogonal matrix consisting of a sequence of z plane\n\
  *  rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',\n\
  *  and P**T is the transpose of P.\n\
  *  \n\
  *  When DIRECT = 'F' (Forward sequence), then\n\
  *  \n\
  *     P = P(z-1) * ... * P(2) * P(1)\n\
  *  \n\
  *  and when DIRECT = 'B' (Backward sequence), then\n\
  *  \n\
  *     P = P(1) * P(2) * ... * P(z-1)\n\
  *  \n\
  *  where P(k) is a plane rotation matrix defined by the 2-by-2 rotation\n\
  *  \n\
  *     R(k) = (  c(k)  s(k) )\n\
  *          = ( -s(k)  c(k) ).\n\
  *  \n\
  *  When PIVOT = 'V' (Variable pivot), the rotation is performed\n\
  *  for the plane (k,k+1), i.e., P(k) has the form\n\
  *  \n\
  *     P(k) = (  1                                            )\n\
  *            (       ...                                     )\n\
  *            (              1                                )\n\
  *            (                   c(k)  s(k)                  )\n\
  *            (                  -s(k)  c(k)                  )\n\
  *            (                                1              )\n\
  *            (                                     ...       )\n\
  *            (                                            1  )\n\
  *  \n\
  *  where R(k) appears as a rank-2 modification to the identity matrix in\n\
  *  rows and columns k and k+1.\n\
  *  \n\
  *  When PIVOT = 'T' (Top pivot), the rotation is performed for the\n\
  *  plane (1,k+1), so P(k) has the form\n\
  *  \n\
  *     P(k) = (  c(k)                    s(k)                 )\n\
  *            (         1                                     )\n\
  *            (              ...                              )\n\
  *            (                     1                         )\n\
  *            ( -s(k)                    c(k)                 )\n\
  *            (                                 1             )\n\
  *            (                                      ...      )\n\
  *            (                                             1 )\n\
  *  \n\
  *  where R(k) appears in rows and columns 1 and k+1.\n\
  *  \n\
  *  Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is\n\
  *  performed for the plane (k,z), giving P(k) the form\n\
  *  \n\
  *     P(k) = ( 1                                             )\n\
  *            (      ...                                      )\n\
  *            (             1                                 )\n\
  *            (                  c(k)                    s(k) )\n\
  *            (                         1                     )\n\
  *            (                              ...              )\n\
  *            (                                     1         )\n\
  *            (                 -s(k)                    c(k) )\n\
  *  \n\
  *  where R(k) appears in rows and columns k and z.  The rotations are\n\
  *  performed without ever forming P(k) explicitly.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  SIDE    (input) CHARACTER*1\n\
  *          Specifies whether the plane rotation matrix P is applied to\n\
  *          A on the left or the right.\n\
  *          = 'L':  Left, compute A := P*A\n\
  *          = 'R':  Right, compute A:= A*P**T\n\
  *\n\
  *  PIVOT   (input) CHARACTER*1\n\
  *          Specifies the plane for which P(k) is a plane rotation\n\
  *          matrix.\n\
  *          = 'V':  Variable pivot, the plane (k,k+1)\n\
  *          = 'T':  Top pivot, the plane (1,k+1)\n\
  *          = 'B':  Bottom pivot, the plane (k,z)\n\
  *\n\
  *  DIRECT  (input) CHARACTER*1\n\
  *          Specifies whether P is a forward or backward sequence of\n\
  *          plane rotations.\n\
  *          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)\n\
  *          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A.  If m <= 1, an immediate\n\
  *          return is effected.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix A.  If n <= 1, an\n\
  *          immediate return is effected.\n\
  *\n\
  *  C       (input) REAL array, dimension\n\
  *                  (M-1) if SIDE = 'L'\n\
  *                  (N-1) if SIDE = 'R'\n\
  *          The cosines c(k) of the plane rotations.\n\
  *\n\
  *  S       (input) REAL array, dimension\n\
  *                  (M-1) if SIDE = 'L'\n\
  *                  (N-1) if SIDE = 'R'\n\
  *          The sines s(k) of the plane rotations.  The 2-by-2 plane\n\
  *          rotation part of the matrix P(k), R(k), has the form\n\
  *          R(k) = (  c(k)  s(k) )\n\
  *                 ( -s(k)  c(k) ).\n\
  *\n\
  *  A       (input/output) COMPLEX array, dimension (LDA,N)\n\
  *          The M-by-N matrix A.  On exit, A is overwritten by P*A if\n\
  *          SIDE = 'R' or by A*P**T if SIDE = 'L'.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"