1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
---
:name: cpotf2
:md5sum: a7c491fac2d61e6bc2983fde569beb7d
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CPOTF2( UPLO, N, A, LDA, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CPOTF2 computes the Cholesky factorization of a complex Hermitian\n\
* positive definite matrix A.\n\
*\n\
* The factorization has the form\n\
* A = U' * U , if UPLO = 'U', or\n\
* A = L * L', if UPLO = 'L',\n\
* where U is an upper triangular matrix and L is lower triangular.\n\
*\n\
* This is the unblocked version of the algorithm, calling Level 2 BLAS.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* Specifies whether the upper or lower triangular part of the\n\
* Hermitian matrix A is stored.\n\
* = 'U': Upper triangular\n\
* = 'L': Lower triangular\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA,N)\n\
* On entry, the Hermitian matrix A. If UPLO = 'U', the leading\n\
* n by n upper triangular part of A contains the upper\n\
* triangular part of the matrix A, and the strictly lower\n\
* triangular part of A is not referenced. If UPLO = 'L', the\n\
* leading n by n lower triangular part of A contains the lower\n\
* triangular part of the matrix A, and the strictly upper\n\
* triangular part of A is not referenced.\n\
*\n\
* On exit, if INFO = 0, the factor U or L from the Cholesky\n\
* factorization A = U'*U or A = L*L'.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -k, the k-th argument had an illegal value\n\
* > 0: if INFO = k, the leading minor of order k is not\n\
* positive definite, and the factorization could not be\n\
* completed.\n\
*\n\n\
* =====================================================================\n\
*\n"
|