1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
---
:name: cpttrs
:md5sum: 13a14e1496854b5687986f2a43e1fdbe
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- d:
:type: real
:intent: input
:dims:
- n
- e:
:type: complex
:intent: input
:dims:
- n-1
- b:
:type: complex
:intent: input/output
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CPTTRS( UPLO, N, NRHS, D, E, B, LDB, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CPTTRS solves a tridiagonal system of the form\n\
* A * X = B\n\
* using the factorization A = U'*D*U or A = L*D*L' computed by CPTTRF.\n\
* D is a diagonal matrix specified in the vector D, U (or L) is a unit\n\
* bidiagonal matrix whose superdiagonal (subdiagonal) is specified in\n\
* the vector E, and X and B are N by NRHS matrices.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* Specifies the form of the factorization and whether the\n\
* vector E is the superdiagonal of the upper bidiagonal factor\n\
* U or the subdiagonal of the lower bidiagonal factor L.\n\
* = 'U': A = U'*D*U, E is the superdiagonal of U\n\
* = 'L': A = L*D*L', E is the subdiagonal of L\n\
*\n\
* N (input) INTEGER\n\
* The order of the tridiagonal matrix A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrix B. NRHS >= 0.\n\
*\n\
* D (input) REAL array, dimension (N)\n\
* The n diagonal elements of the diagonal matrix D from the\n\
* factorization A = U'*D*U or A = L*D*L'.\n\
*\n\
* E (input) COMPLEX array, dimension (N-1)\n\
* If UPLO = 'U', the (n-1) superdiagonal elements of the unit\n\
* bidiagonal factor U from the factorization A = U'*D*U.\n\
* If UPLO = 'L', the (n-1) subdiagonal elements of the unit\n\
* bidiagonal factor L from the factorization A = L*D*L'.\n\
*\n\
* B (input/output) REAL array, dimension (LDB,NRHS)\n\
* On entry, the right hand side vectors B for the system of\n\
* linear equations.\n\
* On exit, the solution vectors, X.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -k, the k-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL UPPER\n INTEGER IUPLO, J, JB, NB\n\
* ..\n\
* .. External Functions ..\n INTEGER ILAENV\n EXTERNAL ILAENV\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL CPTTS2, XERBLA\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC MAX, MIN\n\
* ..\n"
|