1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
---
:name: crot
:md5sum: 5c7ea320d6a9412ddf95fc7a6f674517
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- cx:
:type: complex
:intent: input/output
:dims:
- n
- incx:
:type: integer
:intent: input
- cy:
:type: complex
:intent: input/output
:dims:
- n
- incy:
:type: integer
:intent: input
- c:
:type: real
:intent: input
- s:
:type: complex
:intent: input
:substitutions: {}
:fortran_help: " SUBROUTINE CROT( N, CX, INCX, CY, INCY, C, S )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CROT applies a plane rotation, where the cos (C) is real and the\n\
* sin (S) is complex, and the vectors CX and CY are complex.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The number of elements in the vectors CX and CY.\n\
*\n\
* CX (input/output) COMPLEX array, dimension (N)\n\
* On input, the vector X.\n\
* On output, CX is overwritten with C*X + S*Y.\n\
*\n\
* INCX (input) INTEGER\n\
* The increment between successive values of CY. INCX <> 0.\n\
*\n\
* CY (input/output) COMPLEX array, dimension (N)\n\
* On input, the vector Y.\n\
* On output, CY is overwritten with -CONJG(S)*X + C*Y.\n\
*\n\
* INCY (input) INTEGER\n\
* The increment between successive values of CY. INCX <> 0.\n\
*\n\
* C (input) REAL\n\
* S (input) COMPLEX\n\
* C and S define a rotation\n\
* [ C S ]\n\
* [ -conjg(S) C ]\n\
* where C*C + S*CONJG(S) = 1.0.\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n INTEGER I, IX, IY\n COMPLEX STEMP\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC CONJG\n\
* ..\n"
|