File: ctfsm

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (259 lines) | stat: -rwxr-xr-x 9,539 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
--- 
:name: ctfsm
:md5sum: d21aad1c42cd0f99fe857823611311a5
:category: :subroutine
:arguments: 
- transr: 
    :type: char
    :intent: input
- side: 
    :type: char
    :intent: input
- uplo: 
    :type: char
    :intent: input
- trans: 
    :type: char
    :intent: input
- diag: 
    :type: char
    :intent: input
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- alpha: 
    :type: complex
    :intent: input
- a: 
    :type: complex
    :intent: input
    :dims: 
    - n*(n+1)/2
- b: 
    :type: complex
    :intent: input/output
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
:substitutions: {}

:fortran_help: "      SUBROUTINE CTFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, B, LDB )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  Level 3 BLAS like routine for A in RFP Format.\n\
  *\n\
  *  CTFSM solves the matrix equation\n\
  *\n\
  *     op( A )*X = alpha*B  or  X*op( A ) = alpha*B\n\
  *\n\
  *  where alpha is a scalar, X and B are m by n matrices, A is a unit, or\n\
  *  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of\n\
  *\n\
  *     op( A ) = A   or   op( A ) = conjg( A' ).\n\
  *\n\
  *  A is in Rectangular Full Packed (RFP) Format.\n\
  *\n\
  *  The matrix X is overwritten on B.\n\
  *\n\n\
  *  Arguments\n\
  *  ==========\n\
  *\n\
  *  TRANSR  (input) CHARACTER*1\n\
  *          = 'N':  The Normal Form of RFP A is stored;\n\
  *          = 'C':  The Conjugate-transpose Form of RFP A is stored.\n\
  *\n\
  *  SIDE    (input) CHARACTER*1\n\
  *           On entry, SIDE specifies whether op( A ) appears on the left\n\
  *           or right of X as follows:\n\
  *\n\
  *              SIDE = 'L' or 'l'   op( A )*X = alpha*B.\n\
  *\n\
  *              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.\n\
  *\n\
  *           Unchanged on exit.\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *           On entry, UPLO specifies whether the RFP matrix A came from\n\
  *           an upper or lower triangular matrix as follows:\n\
  *           UPLO = 'U' or 'u' RFP A came from an upper triangular matrix\n\
  *           UPLO = 'L' or 'l' RFP A came from a  lower triangular matrix\n\
  *\n\
  *           Unchanged on exit.\n\
  *\n\
  *  TRANS   (input) CHARACTER*1\n\
  *           On entry, TRANS  specifies the form of op( A ) to be used\n\
  *           in the matrix multiplication as follows:\n\
  *\n\
  *              TRANS  = 'N' or 'n'   op( A ) = A.\n\
  *\n\
  *              TRANS  = 'C' or 'c'   op( A ) = conjg( A' ).\n\
  *\n\
  *           Unchanged on exit.\n\
  *\n\
  *  DIAG    (input) CHARACTER*1\n\
  *           On entry, DIAG specifies whether or not RFP A is unit\n\
  *           triangular as follows:\n\
  *\n\
  *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.\n\
  *\n\
  *              DIAG = 'N' or 'n'   A is not assumed to be unit\n\
  *                                  triangular.\n\
  *\n\
  *           Unchanged on exit.\n\
  *\n\
  *  M       (input) INTEGER\n\
  *           On entry, M specifies the number of rows of B. M must be at\n\
  *           least zero.\n\
  *           Unchanged on exit.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *           On entry, N specifies the number of columns of B.  N must be\n\
  *           at least zero.\n\
  *           Unchanged on exit.\n\
  *\n\
  *  ALPHA   (input) COMPLEX\n\
  *           On entry,  ALPHA specifies the scalar  alpha. When  alpha is\n\
  *           zero then  A is not referenced and  B need not be set before\n\
  *           entry.\n\
  *           Unchanged on exit.\n\
  *\n\
  *  A       (input) COMPLEX array, dimension (N*(N+1)/2)\n\
  *           NT = N*(N+1)/2. On entry, the matrix A in RFP Format.\n\
  *           RFP Format is described by TRANSR, UPLO and N as follows:\n\
  *           If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even;\n\
  *           K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If\n\
  *           TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A as\n\
  *           defined when TRANSR = 'N'. The contents of RFP A are defined\n\
  *           by UPLO as follows: If UPLO = 'U' the RFP A contains the NT\n\
  *           elements of upper packed A either in normal or\n\
  *           conjugate-transpose Format. If UPLO = 'L' the RFP A contains\n\
  *           the NT elements of lower packed A either in normal or\n\
  *           conjugate-transpose Format. The LDA of RFP A is (N+1)/2 when\n\
  *           TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is\n\
  *           even and is N when is odd.\n\
  *           See the Note below for more details. Unchanged on exit.\n\
  *\n\
  *  B       (input/output) COMPLEX array,  dimension (LDB,N)\n\
  *           Before entry,  the leading  m by n part of the array  B must\n\
  *           contain  the  right-hand  side  matrix  B,  and  on exit  is\n\
  *           overwritten by the solution matrix  X.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *           On entry, LDB specifies the first dimension of B as declared\n\
  *           in  the  calling  (sub)  program.   LDB  must  be  at  least\n\
  *           max( 1, m ).\n\
  *           Unchanged on exit.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  We first consider Standard Packed Format when N is even.\n\
  *  We give an example where N = 6.\n\
  *\n\
  *      AP is Upper             AP is Lower\n\
  *\n\
  *   00 01 02 03 04 05       00\n\
  *      11 12 13 14 15       10 11\n\
  *         22 23 24 25       20 21 22\n\
  *            33 34 35       30 31 32 33\n\
  *               44 45       40 41 42 43 44\n\
  *                  55       50 51 52 53 54 55\n\
  *\n\
  *\n\
  *  Let TRANSR = 'N'. RFP holds AP as follows:\n\
  *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last\n\
  *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of\n\
  *  conjugate-transpose of the first three columns of AP upper.\n\
  *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first\n\
  *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of\n\
  *  conjugate-transpose of the last three columns of AP lower.\n\
  *  To denote conjugate we place -- above the element. This covers the\n\
  *  case N even and TRANSR = 'N'.\n\
  *\n\
  *         RFP A                   RFP A\n\
  *\n\
  *                                -- -- --\n\
  *        03 04 05                33 43 53\n\
  *                                   -- --\n\
  *        13 14 15                00 44 54\n\
  *                                      --\n\
  *        23 24 25                10 11 55\n\
  *\n\
  *        33 34 35                20 21 22\n\
  *        --\n\
  *        00 44 45                30 31 32\n\
  *        -- --\n\
  *        01 11 55                40 41 42\n\
  *        -- -- --\n\
  *        02 12 22                50 51 52\n\
  *\n\
  *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n\
  *  transpose of RFP A above. One therefore gets:\n\
  *\n\
  *\n\
  *           RFP A                   RFP A\n\
  *\n\
  *     -- -- -- --                -- -- -- -- -- --\n\
  *     03 13 23 33 00 01 02    33 00 10 20 30 40 50\n\
  *     -- -- -- -- --                -- -- -- -- --\n\
  *     04 14 24 34 44 11 12    43 44 11 21 31 41 51\n\
  *     -- -- -- -- -- --                -- -- -- --\n\
  *     05 15 25 35 45 55 22    53 54 55 22 32 42 52\n\
  *\n\
  *\n\
  *  We next  consider Standard Packed Format when N is odd.\n\
  *  We give an example where N = 5.\n\
  *\n\
  *     AP is Upper                 AP is Lower\n\
  *\n\
  *   00 01 02 03 04              00\n\
  *      11 12 13 14              10 11\n\
  *         22 23 24              20 21 22\n\
  *            33 34              30 31 32 33\n\
  *               44              40 41 42 43 44\n\
  *\n\
  *\n\
  *  Let TRANSR = 'N'. RFP holds AP as follows:\n\
  *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last\n\
  *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of\n\
  *  conjugate-transpose of the first two   columns of AP upper.\n\
  *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first\n\
  *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of\n\
  *  conjugate-transpose of the last two   columns of AP lower.\n\
  *  To denote conjugate we place -- above the element. This covers the\n\
  *  case N odd  and TRANSR = 'N'.\n\
  *\n\
  *         RFP A                   RFP A\n\
  *\n\
  *                                   -- --\n\
  *        02 03 04                00 33 43\n\
  *                                      --\n\
  *        12 13 14                10 11 44\n\
  *\n\
  *        22 23 24                20 21 22\n\
  *        --\n\
  *        00 33 34                30 31 32\n\
  *        -- --\n\
  *        01 11 44                40 41 42\n\
  *\n\
  *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-\n\
  *  transpose of RFP A above. One therefore gets:\n\
  *\n\
  *\n\
  *           RFP A                   RFP A\n\
  *\n\
  *     -- -- --                   -- -- -- -- -- --\n\
  *     02 12 22 00 01             00 10 20 30 40 50\n\
  *     -- -- -- --                   -- -- -- -- --\n\
  *     03 13 23 33 11             33 11 21 31 41 51\n\
  *     -- -- -- -- --                   -- -- -- --\n\
  *     04 14 24 34 44             43 44 22 32 42 52\n\
  *\n\
  *     ..\n"