1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
---
:name: ctgex2
:md5sum: 291e324cd2dab391083a4d6d15ee8c8d
:category: :subroutine
:arguments:
- wantq:
:type: logical
:intent: input
- wantz:
:type: logical
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: complex
:intent: input/output
:dims:
- ldb
- n
- ldb:
:type: integer
:intent: input
- q:
:type: complex
:intent: input/output
:dims:
- "wantq ? ldq : 0"
- "wantq ? n : 0"
- ldq:
:type: integer
:intent: input
- z:
:type: complex
:intent: input/output
:dims:
- "wantq ? ldz : 0"
- "wantq ? n : 0"
- ldz:
:type: integer
:intent: input
- j1:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, J1, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)\n\
* in an upper triangular matrix pair (A, B) by an unitary equivalence\n\
* transformation.\n\
*\n\
* (A, B) must be in generalized Schur canonical form, that is, A and\n\
* B are both upper triangular.\n\
*\n\
* Optionally, the matrices Q and Z of generalized Schur vectors are\n\
* updated.\n\
*\n\
* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'\n\
* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'\n\
*\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* WANTQ (input) LOGICAL\n\
* .TRUE. : update the left transformation matrix Q;\n\
* .FALSE.: do not update Q.\n\
*\n\
* WANTZ (input) LOGICAL\n\
* .TRUE. : update the right transformation matrix Z;\n\
* .FALSE.: do not update Z.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A and B. N >= 0.\n\
*\n\
* A (input/output) COMPLEX arrays, dimensions (LDA,N)\n\
* On entry, the matrix A in the pair (A, B).\n\
* On exit, the updated matrix A.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* B (input/output) COMPLEX arrays, dimensions (LDB,N)\n\
* On entry, the matrix B in the pair (A, B).\n\
* On exit, the updated matrix B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* Q (input/output) COMPLEX array, dimension (LDZ,N)\n\
* If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,\n\
* the updated matrix Q.\n\
* Not referenced if WANTQ = .FALSE..\n\
*\n\
* LDQ (input) INTEGER\n\
* The leading dimension of the array Q. LDQ >= 1;\n\
* If WANTQ = .TRUE., LDQ >= N.\n\
*\n\
* Z (input/output) COMPLEX array, dimension (LDZ,N)\n\
* If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,\n\
* the updated matrix Z.\n\
* Not referenced if WANTZ = .FALSE..\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDZ >= 1;\n\
* If WANTZ = .TRUE., LDZ >= N.\n\
*\n\
* J1 (input) INTEGER\n\
* The index to the first block (A11, B11).\n\
*\n\
* INFO (output) INTEGER\n\
* =0: Successful exit.\n\
* =1: The transformed matrix pair (A, B) would be too far\n\
* from generalized Schur form; the problem is ill-\n\
* conditioned.\n\
*\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n\
* Umea University, S-901 87 Umea, Sweden.\n\
*\n\
* In the current code both weak and strong stability tests are\n\
* performed. The user can omit the strong stability test by changing\n\
* the internal logical parameter WANDS to .FALSE.. See ref. [2] for\n\
* details.\n\
*\n\
* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the\n\
* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in\n\
* M.S. Moonen et al (eds), Linear Algebra for Large Scale and\n\
* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.\n\
*\n\
* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified\n\
* Eigenvalues of a Regular Matrix Pair (A, B) and Condition\n\
* Estimation: Theory, Algorithms and Software, Report UMINF-94.04,\n\
* Department of Computing Science, Umea University, S-901 87 Umea,\n\
* Sweden, 1994. Also as LAPACK Working Note 87. To appear in\n\
* Numerical Algorithms, 1996.\n\
*\n\
* =====================================================================\n\
*\n"
|