1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
|
---
:name: ctptri
:md5sum: 237746a719623b18e0c7de528f689bca
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- diag:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- ap:
:type: complex
:intent: input/output
:dims:
- n*(n+1)/2
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CTPTRI( UPLO, DIAG, N, AP, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CTPTRI computes the inverse of a complex upper or lower triangular\n\
* matrix A stored in packed format.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': A is upper triangular;\n\
* = 'L': A is lower triangular.\n\
*\n\
* DIAG (input) CHARACTER*1\n\
* = 'N': A is non-unit triangular;\n\
* = 'U': A is unit triangular.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* AP (input/output) COMPLEX array, dimension (N*(N+1)/2)\n\
* On entry, the upper or lower triangular matrix A, stored\n\
* columnwise in a linear array. The j-th column of A is stored\n\
* in the array AP as follows:\n\
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
* if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.\n\
* See below for further details.\n\
* On exit, the (triangular) inverse of the original matrix, in\n\
* the same packed storage format.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, A(i,i) is exactly zero. The triangular\n\
* matrix is singular and its inverse can not be computed.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* A triangular matrix A can be transferred to packed storage using one\n\
* of the following program segments:\n\
*\n\
* UPLO = 'U': UPLO = 'L':\n\
*\n\
* JC = 1 JC = 1\n\
* DO 2 J = 1, N DO 2 J = 1, N\n\
* DO 1 I = 1, J DO 1 I = J, N\n\
* AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)\n\
* 1 CONTINUE 1 CONTINUE\n\
* JC = JC + J JC = JC + N - J + 1\n\
* 2 CONTINUE 2 CONTINUE\n\
*\n\
* =====================================================================\n\
*\n"
|