1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
---
:name: ctrrfs
:md5sum: 323b422cdf688d84bac937d4cd0110dd
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- diag:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- a:
:type: complex
:intent: input
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: complex
:intent: input
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
- x:
:type: complex
:intent: input
:dims:
- ldx
- nrhs
- ldx:
:type: integer
:intent: input
- ferr:
:type: real
:intent: output
:dims:
- nrhs
- berr:
:type: real
:intent: output
:dims:
- nrhs
- work:
:type: complex
:intent: workspace
:dims:
- 2*n
- rwork:
:type: real
:intent: workspace
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CTRRFS provides error bounds and backward error estimates for the\n\
* solution to a system of linear equations with a triangular\n\
* coefficient matrix.\n\
*\n\
* The solution matrix X must be computed by CTRTRS or some other\n\
* means before entering this routine. CTRRFS does not do iterative\n\
* refinement because doing so cannot improve the backward error.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': A is upper triangular;\n\
* = 'L': A is lower triangular.\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* Specifies the form of the system of equations:\n\
* = 'N': A * X = B (No transpose)\n\
* = 'T': A**T * X = B (Transpose)\n\
* = 'C': A**H * X = B (Conjugate transpose)\n\
*\n\
* DIAG (input) CHARACTER*1\n\
* = 'N': A is non-unit triangular;\n\
* = 'U': A is unit triangular.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrices B and X. NRHS >= 0.\n\
*\n\
* A (input) COMPLEX array, dimension (LDA,N)\n\
* The triangular matrix A. If UPLO = 'U', the leading N-by-N\n\
* upper triangular part of the array A contains the upper\n\
* triangular matrix, and the strictly lower triangular part of\n\
* A is not referenced. If UPLO = 'L', the leading N-by-N lower\n\
* triangular part of the array A contains the lower triangular\n\
* matrix, and the strictly upper triangular part of A is not\n\
* referenced. If DIAG = 'U', the diagonal elements of A are\n\
* also not referenced and are assumed to be 1.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* B (input) COMPLEX array, dimension (LDB,NRHS)\n\
* The right hand side matrix B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* X (input) COMPLEX array, dimension (LDX,NRHS)\n\
* The solution matrix X.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X. LDX >= max(1,N).\n\
*\n\
* FERR (output) REAL array, dimension (NRHS)\n\
* The estimated forward error bound for each solution vector\n\
* X(j) (the j-th column of the solution matrix X).\n\
* If XTRUE is the true solution corresponding to X(j), FERR(j)\n\
* is an estimated upper bound for the magnitude of the largest\n\
* element in (X(j) - XTRUE) divided by the magnitude of the\n\
* largest element in X(j). The estimate is as reliable as\n\
* the estimate for RCOND, and is almost always a slight\n\
* overestimate of the true error.\n\
*\n\
* BERR (output) REAL array, dimension (NRHS)\n\
* The componentwise relative backward error of each solution\n\
* vector X(j) (i.e., the smallest relative change in\n\
* any element of A or B that makes X(j) an exact solution).\n\
*\n\
* WORK (workspace) COMPLEX array, dimension (2*N)\n\
*\n\
* RWORK (workspace) REAL array, dimension (N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* =====================================================================\n\
*\n"
|