1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
---
:name: ctzrqf
:md5sum: 073bf9d20f3eef05da18d6ba71f465f8
:category: :subroutine
:arguments:
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- tau:
:type: complex
:intent: output
:dims:
- m
- info:
:type: integer
:intent: output
:substitutions:
m: lda
:fortran_help: " SUBROUTINE CTZRQF( M, N, A, LDA, TAU, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* This routine is deprecated and has been replaced by routine CTZRZF.\n\
*\n\
* CTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A\n\
* to upper triangular form by means of unitary transformations.\n\
*\n\
* The upper trapezoidal matrix A is factored as\n\
*\n\
* A = ( R 0 ) * Z,\n\
*\n\
* where Z is an N-by-N unitary matrix and R is an M-by-M upper\n\
* triangular matrix.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix A. N >= M.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA,N)\n\
* On entry, the leading M-by-N upper trapezoidal part of the\n\
* array A must contain the matrix to be factorized.\n\
* On exit, the leading M-by-M upper triangular part of A\n\
* contains the upper triangular matrix R, and elements M+1 to\n\
* N of the first M rows of A, with the array TAU, represent the\n\
* unitary matrix Z as a product of M elementary reflectors.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* TAU (output) COMPLEX array, dimension (M)\n\
* The scalar factors of the elementary reflectors.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* The factorization is obtained by Householder's method. The kth\n\
* transformation matrix, Z( k ), whose conjugate transpose is used to\n\
* introduce zeros into the (m - k + 1)th row of A, is given in the form\n\
*\n\
* Z( k ) = ( I 0 ),\n\
* ( 0 T( k ) )\n\
*\n\
* where\n\
*\n\
* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),\n\
* ( 0 )\n\
* ( z( k ) )\n\
*\n\
* tau is a scalar and z( k ) is an ( n - m ) element vector.\n\
* tau and z( k ) are chosen to annihilate the elements of the kth row\n\
* of X.\n\
*\n\
* The scalar tau is returned in the kth element of TAU and the vector\n\
* u( k ) in the kth row of A, such that the elements of z( k ) are\n\
* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in\n\
* the upper triangular part of A.\n\
*\n\
* Z is given by\n\
*\n\
* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).\n\
*\n\
* =====================================================================\n\
*\n"
|