1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
---
:name: dgeequb
:md5sum: c63a97ad851901733ab2b896a9ad93a8
:category: :subroutine
:arguments:
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- r:
:type: doublereal
:intent: output
:dims:
- m
- c:
:type: doublereal
:intent: output
:dims:
- n
- rowcnd:
:type: doublereal
:intent: output
- colcnd:
:type: doublereal
:intent: output
- amax:
:type: doublereal
:intent: output
- info:
:type: integer
:intent: output
:substitutions:
m: lda
:fortran_help: " SUBROUTINE DGEEQUB( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DGEEQUB computes row and column scalings intended to equilibrate an\n\
* M-by-N matrix A and reduce its condition number. R returns the row\n\
* scale factors and C the column scale factors, chosen to try to make\n\
* the largest element in each row and column of the matrix B with\n\
* elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most\n\
* the radix.\n\
*\n\
* R(i) and C(j) are restricted to be a power of the radix between\n\
* SMLNUM = smallest safe number and BIGNUM = largest safe number. Use\n\
* of these scaling factors is not guaranteed to reduce the condition\n\
* number of A but works well in practice.\n\
*\n\
* This routine differs from DGEEQU by restricting the scaling factors\n\
* to a power of the radix. Baring over- and underflow, scaling by\n\
* these factors introduces no additional rounding errors. However, the\n\
* scaled entries' magnitured are no longer approximately 1 but lie\n\
* between sqrt(radix) and 1/sqrt(radix).\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix A. N >= 0.\n\
*\n\
* A (input) DOUBLE PRECISION array, dimension (LDA,N)\n\
* The M-by-N matrix whose equilibration factors are\n\
* to be computed.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* R (output) DOUBLE PRECISION array, dimension (M)\n\
* If INFO = 0 or INFO > M, R contains the row scale factors\n\
* for A.\n\
*\n\
* C (output) DOUBLE PRECISION array, dimension (N)\n\
* If INFO = 0, C contains the column scale factors for A.\n\
*\n\
* ROWCND (output) DOUBLE PRECISION\n\
* If INFO = 0 or INFO > M, ROWCND contains the ratio of the\n\
* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and\n\
* AMAX is neither too large nor too small, it is not worth\n\
* scaling by R.\n\
*\n\
* COLCND (output) DOUBLE PRECISION\n\
* If INFO = 0, COLCND contains the ratio of the smallest\n\
* C(i) to the largest C(i). If COLCND >= 0.1, it is not\n\
* worth scaling by C.\n\
*\n\
* AMAX (output) DOUBLE PRECISION\n\
* Absolute value of largest matrix element. If AMAX is very\n\
* close to overflow or very close to underflow, the matrix\n\
* should be scaled.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, and i is\n\
* <= M: the i-th row of A is exactly zero\n\
* > M: the (i-M)-th column of A is exactly zero\n\
*\n\n\
* =====================================================================\n\
*\n"
|