File: dgegv

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (286 lines) | stat: -rwxr-xr-x 11,221 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
--- 
:name: dgegv
:md5sum: 155f15d8861adb20fd687c0f414a941d
:category: :subroutine
:arguments: 
- jobvl: 
    :type: char
    :intent: input
- jobvr: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- alphar: 
    :type: doublereal
    :intent: output
    :dims: 
    - n
- alphai: 
    :type: doublereal
    :intent: output
    :dims: 
    - n
- beta: 
    :type: doublereal
    :intent: output
    :dims: 
    - n
- vl: 
    :type: doublereal
    :intent: output
    :dims: 
    - ldvl
    - n
- ldvl: 
    :type: integer
    :intent: input
- vr: 
    :type: doublereal
    :intent: output
    :dims: 
    - ldvr
    - n
- ldvr: 
    :type: integer
    :intent: input
- work: 
    :type: doublereal
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: 8*n
- info: 
    :type: integer
    :intent: output
:substitutions: 
  ldvr: "lsame_(&jobvr,\"V\") ? n : 1"
  ldvl: "lsame_(&jobvl,\"V\") ? n : 1"
:fortran_help: "      SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  This routine is deprecated and has been replaced by routine DGGEV.\n\
  *\n\
  *  DGEGV computes the eigenvalues and, optionally, the left and/or right\n\
  *  eigenvectors of a real matrix pair (A,B).\n\
  *  Given two square matrices A and B,\n\
  *  the generalized nonsymmetric eigenvalue problem (GNEP) is to find the\n\
  *  eigenvalues lambda and corresponding (non-zero) eigenvectors x such\n\
  *  that\n\
  *\n\
  *     A*x = lambda*B*x.\n\
  *\n\
  *  An alternate form is to find the eigenvalues mu and corresponding\n\
  *  eigenvectors y such that\n\
  *\n\
  *     mu*A*y = B*y.\n\
  *\n\
  *  These two forms are equivalent with mu = 1/lambda and x = y if\n\
  *  neither lambda nor mu is zero.  In order to deal with the case that\n\
  *  lambda or mu is zero or small, two values alpha and beta are returned\n\
  *  for each eigenvalue, such that lambda = alpha/beta and\n\
  *  mu = beta/alpha.\n\
  *\n\
  *  The vectors x and y in the above equations are right eigenvectors of\n\
  *  the matrix pair (A,B).  Vectors u and v satisfying\n\
  *\n\
  *     u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B\n\
  *\n\
  *  are left eigenvectors of (A,B).\n\
  *\n\
  *  Note: this routine performs \"full balancing\" on A and B -- see\n\
  *  \"Further Details\", below.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOBVL   (input) CHARACTER*1\n\
  *          = 'N':  do not compute the left generalized eigenvectors;\n\
  *          = 'V':  compute the left generalized eigenvectors (returned\n\
  *                  in VL).\n\
  *\n\
  *  JOBVR   (input) CHARACTER*1\n\
  *          = 'N':  do not compute the right generalized eigenvectors;\n\
  *          = 'V':  compute the right generalized eigenvectors (returned\n\
  *                  in VR).\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrices A, B, VL, and VR.  N >= 0.\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)\n\
  *          On entry, the matrix A.\n\
  *          If JOBVL = 'V' or JOBVR = 'V', then on exit A\n\
  *          contains the real Schur form of A from the generalized Schur\n\
  *          factorization of the pair (A,B) after balancing.\n\
  *          If no eigenvectors were computed, then only the diagonal\n\
  *          blocks from the Schur form will be correct.  See DGGHRD and\n\
  *          DHGEQZ for details.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of A.  LDA >= max(1,N).\n\
  *\n\
  *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)\n\
  *          On entry, the matrix B.\n\
  *          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the\n\
  *          upper triangular matrix obtained from B in the generalized\n\
  *          Schur factorization of the pair (A,B) after balancing.\n\
  *          If no eigenvectors were computed, then only those elements of\n\
  *          B corresponding to the diagonal blocks from the Schur form of\n\
  *          A will be correct.  See DGGHRD and DHGEQZ for details.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of B.  LDB >= max(1,N).\n\
  *\n\
  *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)\n\
  *          The real parts of each scalar alpha defining an eigenvalue of\n\
  *          GNEP.\n\
  *\n\
  *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)\n\
  *          The imaginary parts of each scalar alpha defining an\n\
  *          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th\n\
  *          eigenvalue is real; if positive, then the j-th and\n\
  *          (j+1)-st eigenvalues are a complex conjugate pair, with\n\
  *          ALPHAI(j+1) = -ALPHAI(j).\n\
  *\n\
  *  BETA    (output) DOUBLE PRECISION array, dimension (N)\n\
  *          The scalars beta that define the eigenvalues of GNEP.\n\
  *          \n\
  *          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and\n\
  *          beta = BETA(j) represent the j-th eigenvalue of the matrix\n\
  *          pair (A,B), in one of the forms lambda = alpha/beta or\n\
  *          mu = beta/alpha.  Since either lambda or mu may overflow,\n\
  *          they should not, in general, be computed.\n\
  *\n\
  *  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)\n\
  *          If JOBVL = 'V', the left eigenvectors u(j) are stored\n\
  *          in the columns of VL, in the same order as their eigenvalues.\n\
  *          If the j-th eigenvalue is real, then u(j) = VL(:,j).\n\
  *          If the j-th and (j+1)-st eigenvalues form a complex conjugate\n\
  *          pair, then\n\
  *             u(j) = VL(:,j) + i*VL(:,j+1)\n\
  *          and\n\
  *            u(j+1) = VL(:,j) - i*VL(:,j+1).\n\
  *\n\
  *          Each eigenvector is scaled so that its largest component has\n\
  *          abs(real part) + abs(imag. part) = 1, except for eigenvectors\n\
  *          corresponding to an eigenvalue with alpha = beta = 0, which\n\
  *          are set to zero.\n\
  *          Not referenced if JOBVL = 'N'.\n\
  *\n\
  *  LDVL    (input) INTEGER\n\
  *          The leading dimension of the matrix VL. LDVL >= 1, and\n\
  *          if JOBVL = 'V', LDVL >= N.\n\
  *\n\
  *  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)\n\
  *          If JOBVR = 'V', the right eigenvectors x(j) are stored\n\
  *          in the columns of VR, in the same order as their eigenvalues.\n\
  *          If the j-th eigenvalue is real, then x(j) = VR(:,j).\n\
  *          If the j-th and (j+1)-st eigenvalues form a complex conjugate\n\
  *          pair, then\n\
  *            x(j) = VR(:,j) + i*VR(:,j+1)\n\
  *          and\n\
  *            x(j+1) = VR(:,j) - i*VR(:,j+1).\n\
  *\n\
  *          Each eigenvector is scaled so that its largest component has\n\
  *          abs(real part) + abs(imag. part) = 1, except for eigenvalues\n\
  *          corresponding to an eigenvalue with alpha = beta = 0, which\n\
  *          are set to zero.\n\
  *          Not referenced if JOBVR = 'N'.\n\
  *\n\
  *  LDVR    (input) INTEGER\n\
  *          The leading dimension of the matrix VR. LDVR >= 1, and\n\
  *          if JOBVR = 'V', LDVR >= N.\n\
  *\n\
  *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK.  LWORK >= max(1,8*N).\n\
  *          For good performance, LWORK must generally be larger.\n\
  *          To compute the optimal value of LWORK, call ILAENV to get\n\
  *          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:\n\
  *          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR;\n\
  *          The optimal LWORK is:\n\
  *              2*N + MAX( 6*N, N*(NB+1) ).\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *          = 1,...,N:\n\
  *                The QZ iteration failed.  No eigenvectors have been\n\
  *                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)\n\
  *                should be correct for j=INFO+1,...,N.\n\
  *          > N:  errors that usually indicate LAPACK problems:\n\
  *                =N+1: error return from DGGBAL\n\
  *                =N+2: error return from DGEQRF\n\
  *                =N+3: error return from DORMQR\n\
  *                =N+4: error return from DORGQR\n\
  *                =N+5: error return from DGGHRD\n\
  *                =N+6: error return from DHGEQZ (other than failed\n\
  *                                                iteration)\n\
  *                =N+7: error return from DTGEVC\n\
  *                =N+8: error return from DGGBAK (computing VL)\n\
  *                =N+9: error return from DGGBAK (computing VR)\n\
  *                =N+10: error return from DLASCL (various calls)\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Balancing\n\
  *  ---------\n\
  *\n\
  *  This driver calls DGGBAL to both permute and scale rows and columns\n\
  *  of A and B.  The permutations PL and PR are chosen so that PL*A*PR\n\
  *  and PL*B*R will be upper triangular except for the diagonal blocks\n\
  *  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as\n\
  *  possible.  The diagonal scaling matrices DL and DR are chosen so\n\
  *  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to\n\
  *  one (except for the elements that start out zero.)\n\
  *\n\
  *  After the eigenvalues and eigenvectors of the balanced matrices\n\
  *  have been computed, DGGBAK transforms the eigenvectors back to what\n\
  *  they would have been (in perfect arithmetic) if they had not been\n\
  *  balanced.\n\
  *\n\
  *  Contents of A and B on Exit\n\
  *  -------- -- - --- - -- ----\n\
  *\n\
  *  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or\n\
  *  both), then on exit the arrays A and B will contain the real Schur\n\
  *  form[*] of the \"balanced\" versions of A and B.  If no eigenvectors\n\
  *  are computed, then only the diagonal blocks will be correct.\n\
  *\n\
  *  [*] See DHGEQZ, DGEGS, or read the book \"Matrix Computations\",\n\
  *      by Golub & van Loan, pub. by Johns Hopkins U. Press.\n\
  *\n\
  *  =====================================================================\n\
  *\n"