1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
---
:name: dgehd2
:md5sum: 4829ae3085abb612140e17e11185438d
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- ilo:
:type: integer
:intent: input
- ihi:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- tau:
:type: doublereal
:intent: output
:dims:
- n-1
- work:
:type: doublereal
:intent: workspace
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DGEHD2 reduces a real general matrix A to upper Hessenberg form H by\n\
* an orthogonal similarity transformation: Q' * A * Q = H .\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* ILO (input) INTEGER\n\
* IHI (input) INTEGER\n\
* It is assumed that A is already upper triangular in rows\n\
* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally\n\
* set by a previous call to DGEBAL; otherwise they should be\n\
* set to 1 and N respectively. See Further Details.\n\
* 1 <= ILO <= IHI <= max(1,N).\n\
*\n\
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
* On entry, the n by n general matrix to be reduced.\n\
* On exit, the upper triangle and the first subdiagonal of A\n\
* are overwritten with the upper Hessenberg matrix H, and the\n\
* elements below the first subdiagonal, with the array TAU,\n\
* represent the orthogonal matrix Q as a product of elementary\n\
* reflectors. See Further Details.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* TAU (output) DOUBLE PRECISION array, dimension (N-1)\n\
* The scalar factors of the elementary reflectors (see Further\n\
* Details).\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* The matrix Q is represented as a product of (ihi-ilo) elementary\n\
* reflectors\n\
*\n\
* Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n\
*\n\
* Each H(i) has the form\n\
*\n\
* H(i) = I - tau * v * v'\n\
*\n\
* where tau is a real scalar, and v is a real vector with\n\
* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on\n\
* exit in A(i+2:ihi,i), and tau in TAU(i).\n\
*\n\
* The contents of A are illustrated by the following example, with\n\
* n = 7, ilo = 2 and ihi = 6:\n\
*\n\
* on entry, on exit,\n\
*\n\
* ( a a a a a a a ) ( a a h h h h a )\n\
* ( a a a a a a ) ( a h h h h a )\n\
* ( a a a a a a ) ( h h h h h h )\n\
* ( a a a a a a ) ( v2 h h h h h )\n\
* ( a a a a a a ) ( v2 v3 h h h h )\n\
* ( a a a a a a ) ( v2 v3 v4 h h h )\n\
* ( a ) ( a )\n\
*\n\
* where a denotes an element of the original matrix A, h denotes a\n\
* modified element of the upper Hessenberg matrix H, and vi denotes an\n\
* element of the vector defining H(i).\n\
*\n\
* =====================================================================\n\
*\n"
|