File: dgehd2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (115 lines) | stat: -rwxr-xr-x 3,860 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
--- 
:name: dgehd2
:md5sum: 4829ae3085abb612140e17e11185438d
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- ilo: 
    :type: integer
    :intent: input
- ihi: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- tau: 
    :type: doublereal
    :intent: output
    :dims: 
    - n-1
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DGEHD2 reduces a real general matrix A to upper Hessenberg form H by\n\
  *  an orthogonal similarity transformation:  Q' * A * Q = H .\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  ILO     (input) INTEGER\n\
  *  IHI     (input) INTEGER\n\
  *          It is assumed that A is already upper triangular in rows\n\
  *          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally\n\
  *          set by a previous call to DGEBAL; otherwise they should be\n\
  *          set to 1 and N respectively. See Further Details.\n\
  *          1 <= ILO <= IHI <= max(1,N).\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
  *          On entry, the n by n general matrix to be reduced.\n\
  *          On exit, the upper triangle and the first subdiagonal of A\n\
  *          are overwritten with the upper Hessenberg matrix H, and the\n\
  *          elements below the first subdiagonal, with the array TAU,\n\
  *          represent the orthogonal matrix Q as a product of elementary\n\
  *          reflectors. See Further Details.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  TAU     (output) DOUBLE PRECISION array, dimension (N-1)\n\
  *          The scalar factors of the elementary reflectors (see Further\n\
  *          Details).\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension (N)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit.\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The matrix Q is represented as a product of (ihi-ilo) elementary\n\
  *  reflectors\n\
  *\n\
  *     Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n\
  *\n\
  *  Each H(i) has the form\n\
  *\n\
  *     H(i) = I - tau * v * v'\n\
  *\n\
  *  where tau is a real scalar, and v is a real vector with\n\
  *  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on\n\
  *  exit in A(i+2:ihi,i), and tau in TAU(i).\n\
  *\n\
  *  The contents of A are illustrated by the following example, with\n\
  *  n = 7, ilo = 2 and ihi = 6:\n\
  *\n\
  *  on entry,                        on exit,\n\
  *\n\
  *  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )\n\
  *  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )\n\
  *  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )\n\
  *  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )\n\
  *  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )\n\
  *  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )\n\
  *  (                         a )    (                          a )\n\
  *\n\
  *  where a denotes an element of the original matrix A, h denotes a\n\
  *  modified element of the upper Hessenberg matrix H, and vi denotes an\n\
  *  element of the vector defining H(i).\n\
  *\n\
  *  =====================================================================\n\
  *\n"