1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
---
:name: dgehrd
:md5sum: 9dba8e3f6472cee11825e94623b48f41
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- ilo:
:type: integer
:intent: input
- ihi:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- tau:
:type: doublereal
:intent: output
:dims:
- n-1
- work:
:type: doublereal
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DGEHRD reduces a real general matrix A to upper Hessenberg form H by\n\
* an orthogonal similarity transformation: Q' * A * Q = H .\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* ILO (input) INTEGER\n\
* IHI (input) INTEGER\n\
* It is assumed that A is already upper triangular in rows\n\
* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally\n\
* set by a previous call to DGEBAL; otherwise they should be\n\
* set to 1 and N respectively. See Further Details.\n\
* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.\n\
*\n\
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
* On entry, the N-by-N general matrix to be reduced.\n\
* On exit, the upper triangle and the first subdiagonal of A\n\
* are overwritten with the upper Hessenberg matrix H, and the\n\
* elements below the first subdiagonal, with the array TAU,\n\
* represent the orthogonal matrix Q as a product of elementary\n\
* reflectors. See Further Details.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* TAU (output) DOUBLE PRECISION array, dimension (N-1)\n\
* The scalar factors of the elementary reflectors (see Further\n\
* Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to\n\
* zero.\n\
*\n\
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The length of the array WORK. LWORK >= max(1,N).\n\
* For optimum performance LWORK >= N*NB, where NB is the\n\
* optimal blocksize.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* The matrix Q is represented as a product of (ihi-ilo) elementary\n\
* reflectors\n\
*\n\
* Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n\
*\n\
* Each H(i) has the form\n\
*\n\
* H(i) = I - tau * v * v'\n\
*\n\
* where tau is a real scalar, and v is a real vector with\n\
* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on\n\
* exit in A(i+2:ihi,i), and tau in TAU(i).\n\
*\n\
* The contents of A are illustrated by the following example, with\n\
* n = 7, ilo = 2 and ihi = 6:\n\
*\n\
* on entry, on exit,\n\
*\n\
* ( a a a a a a a ) ( a a h h h h a )\n\
* ( a a a a a a ) ( a h h h h a )\n\
* ( a a a a a a ) ( h h h h h h )\n\
* ( a a a a a a ) ( v2 h h h h h )\n\
* ( a a a a a a ) ( v2 v3 h h h h )\n\
* ( a a a a a a ) ( v2 v3 v4 h h h )\n\
* ( a ) ( a )\n\
*\n\
* where a denotes an element of the original matrix A, h denotes a\n\
* modified element of the upper Hessenberg matrix H, and vi denotes an\n\
* element of the vector defining H(i).\n\
*\n\
* This file is a slight modification of LAPACK-3.0's DGEHRD\n\
* subroutine incorporating improvements proposed by Quintana-Orti and\n\
* Van de Geijn (2006). (See DLAHR2.)\n\
*\n\
* =====================================================================\n\
*\n"
|