1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
|
---
:name: dgejsv
:md5sum: 48e427f846d8774d81a35aecade0f887
:category: :subroutine
:arguments:
- joba:
:type: char
:intent: input
- jobu:
:type: char
:intent: input
- jobv:
:type: char
:intent: input
- jobr:
:type: char
:intent: input
- jobt:
:type: char
:intent: input
- jobp:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- sva:
:type: doublereal
:intent: output
:dims:
- n
- u:
:type: doublereal
:intent: output
:dims:
- ldu
- n
- ldu:
:type: integer
:intent: input
- v:
:type: doublereal
:intent: output
:dims:
- ldv
- n
- ldv:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: input/output
:dims:
- lwork
- lwork:
:type: integer
:intent: input
:option: true
:default: "(lsame_(&jobu,\"N\")&&lsame_(&jobv,\"N\")) ? MAX(MAX(2*m+n,4*n+n*n),7) : lsame_(&jobv,\"V\") ? MAX(2*n+m,7) : ((lsame_(&jobu,\"U\")||lsame_(&jobu,\"F\"))&&lsame_(&jobv,\"V\")) ? MAX(MAX(6*n+2*n*n,m+3*n+n*n),7) : MAX(2*n+m,7)"
- iwork:
:type: integer
:intent: output
:dims:
- m+3*n
- info:
:type: integer
:intent: output
:substitutions:
ldu: "(lsame_(&jobu,\"U\")||lsame_(&jobu,\"F\")||lsame_(&jobu,\"W\")) ? m : 1"
ldv: "(lsame_(&jobu,\"U\")||lsame_(&jobu,\"F\")||lsame_(&jobu,\"W\")) ? n : 1"
:fortran_help: " SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, M, N, A, LDA, SVA, U, LDU, V, LDV, WORK, LWORK, IWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DGEJSV computes the singular value decomposition (SVD) of a real M-by-N\n\
* matrix [A], where M >= N. The SVD of [A] is written as\n\
*\n\
* [A] = [U] * [SIGMA] * [V]^t,\n\
*\n\
* where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N\n\
* diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and\n\
* [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are\n\
* the singular values of [A]. The columns of [U] and [V] are the left and\n\
* the right singular vectors of [A], respectively. The matrices [U] and [V]\n\
* are computed and stored in the arrays U and V, respectively. The diagonal\n\
* of [SIGMA] is computed and stored in the array SVA.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBA (input) CHARACTER*1\n\
* Specifies the level of accuracy:\n\
* = 'C': This option works well (high relative accuracy) if A = B * D,\n\
* with well-conditioned B and arbitrary diagonal matrix D.\n\
* The accuracy cannot be spoiled by COLUMN scaling. The\n\
* accuracy of the computed output depends on the condition of\n\
* B, and the procedure aims at the best theoretical accuracy.\n\
* The relative error max_{i=1:N}|d sigma_i| / sigma_i is\n\
* bounded by f(M,N)*epsilon* cond(B), independent of D.\n\
* The input matrix is preprocessed with the QRF with column\n\
* pivoting. This initial preprocessing and preconditioning by\n\
* a rank revealing QR factorization is common for all values of\n\
* JOBA. Additional actions are specified as follows:\n\
* = 'E': Computation as with 'C' with an additional estimate of the\n\
* condition number of B. It provides a realistic error bound.\n\
* = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings\n\
* D1, D2, and well-conditioned matrix C, this option gives\n\
* higher accuracy than the 'C' option. If the structure of the\n\
* input matrix is not known, and relative accuracy is\n\
* desirable, then this option is advisable. The input matrix A\n\
* is preprocessed with QR factorization with FULL (row and\n\
* column) pivoting.\n\
* = 'G' Computation as with 'F' with an additional estimate of the\n\
* condition number of B, where A=D*B. If A has heavily weighted\n\
* rows, then using this condition number gives too pessimistic\n\
* error bound.\n\
* = 'A': Small singular values are the noise and the matrix is treated\n\
* as numerically rank defficient. The error in the computed\n\
* singular values is bounded by f(m,n)*epsilon*||A||.\n\
* The computed SVD A = U * S * V^t restores A up to\n\
* f(m,n)*epsilon*||A||.\n\
* This gives the procedure the licence to discard (set to zero)\n\
* all singular values below N*epsilon*||A||.\n\
* = 'R': Similar as in 'A'. Rank revealing property of the initial\n\
* QR factorization is used do reveal (using triangular factor)\n\
* a gap sigma_{r+1} < epsilon * sigma_r in which case the\n\
* numerical RANK is declared to be r. The SVD is computed with\n\
* absolute error bounds, but more accurately than with 'A'.\n\
*\n\
* JOBU (input) CHARACTER*1\n\
* Specifies whether to compute the columns of U:\n\
* = 'U': N columns of U are returned in the array U.\n\
* = 'F': full set of M left sing. vectors is returned in the array U.\n\
* = 'W': U may be used as workspace of length M*N. See the description\n\
* of U.\n\
* = 'N': U is not computed.\n\
*\n\
* JOBV (input) CHARACTER*1\n\
* Specifies whether to compute the matrix V:\n\
* = 'V': N columns of V are returned in the array V; Jacobi rotations\n\
* are not explicitly accumulated.\n\
* = 'J': N columns of V are returned in the array V, but they are\n\
* computed as the product of Jacobi rotations. This option is\n\
* allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.\n\
* = 'W': V may be used as workspace of length N*N. See the description\n\
* of V.\n\
* = 'N': V is not computed.\n\
*\n\
* JOBR (input) CHARACTER*1\n\
* Specifies the RANGE for the singular values. Issues the licence to\n\
* set to zero small positive singular values if they are outside\n\
* specified range. If A .NE. 0 is scaled so that the largest singular\n\
* value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues\n\
* the licence to kill columns of A whose norm in c*A is less than\n\
* DSQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,\n\
* where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').\n\
* = 'N': Do not kill small columns of c*A. This option assumes that\n\
* BLAS and QR factorizations and triangular solvers are\n\
* implemented to work in that range. If the condition of A\n\
* is greater than BIG, use DGESVJ.\n\
* = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)]\n\
* (roughly, as described above). This option is recommended.\n\
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\
* For computing the singular values in the FULL range [SFMIN,BIG]\n\
* use DGESVJ.\n\
*\n\
* JOBT (input) CHARACTER*1\n\
* If the matrix is square then the procedure may determine to use\n\
* transposed A if A^t seems to be better with respect to convergence.\n\
* If the matrix is not square, JOBT is ignored. This is subject to\n\
* changes in the future.\n\
* The decision is based on two values of entropy over the adjoint\n\
* orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).\n\
* = 'T': transpose if entropy test indicates possibly faster\n\
* convergence of Jacobi process if A^t is taken as input. If A is\n\
* replaced with A^t, then the row pivoting is included automatically.\n\
* = 'N': do not speculate.\n\
* This option can be used to compute only the singular values, or the\n\
* full SVD (U, SIGMA and V). For only one set of singular vectors\n\
* (U or V), the caller should provide both U and V, as one of the\n\
* matrices is used as workspace if the matrix A is transposed.\n\
* The implementer can easily remove this constraint and make the\n\
* code more complicated. See the descriptions of U and V.\n\
*\n\
* JOBP (input) CHARACTER*1\n\
* Issues the licence to introduce structured perturbations to drown\n\
* denormalized numbers. This licence should be active if the\n\
* denormals are poorly implemented, causing slow computation,\n\
* especially in cases of fast convergence (!). For details see [1,2].\n\
* For the sake of simplicity, this perturbations are included only\n\
* when the full SVD or only the singular values are requested. The\n\
* implementer/user can easily add the perturbation for the cases of\n\
* computing one set of singular vectors.\n\
* = 'P': introduce perturbation\n\
* = 'N': do not perturb\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the input matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the input matrix A. M >= N >= 0.\n\
*\n\
* A (input/workspace) DOUBLE PRECISION array, dimension (LDA,N)\n\
* On entry, the M-by-N matrix A.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* SVA (workspace/output) DOUBLE PRECISION array, dimension (N)\n\
* On exit,\n\
* - For WORK(1)/WORK(2) = ONE: The singular values of A. During the\n\
* computation SVA contains Euclidean column norms of the\n\
* iterated matrices in the array A.\n\
* - For WORK(1) .NE. WORK(2): The singular values of A are\n\
* (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if\n\
* sigma_max(A) overflows or if small singular values have been\n\
* saved from underflow by scaling the input matrix A.\n\
* - If JOBR='R' then some of the singular values may be returned\n\
* as exact zeros obtained by \"set to zero\" because they are\n\
* below the numerical rank threshold or are denormalized numbers.\n\
*\n\
* U (workspace/output) DOUBLE PRECISION array, dimension ( LDU, N )\n\
* If JOBU = 'U', then U contains on exit the M-by-N matrix of\n\
* the left singular vectors.\n\
* If JOBU = 'F', then U contains on exit the M-by-M matrix of\n\
* the left singular vectors, including an ONB\n\
* of the orthogonal complement of the Range(A).\n\
* If JOBU = 'W' .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),\n\
* then U is used as workspace if the procedure\n\
* replaces A with A^t. In that case, [V] is computed\n\
* in U as left singular vectors of A^t and then\n\
* copied back to the V array. This 'W' option is just\n\
* a reminder to the caller that in this case U is\n\
* reserved as workspace of length N*N.\n\
* If JOBU = 'N' U is not referenced.\n\
*\n\
* LDU (input) INTEGER\n\
* The leading dimension of the array U, LDU >= 1.\n\
* IF JOBU = 'U' or 'F' or 'W', then LDU >= M.\n\
*\n\
* V (workspace/output) DOUBLE PRECISION array, dimension ( LDV, N )\n\
* If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of\n\
* the right singular vectors;\n\
* If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),\n\
* then V is used as workspace if the pprocedure\n\
* replaces A with A^t. In that case, [U] is computed\n\
* in V as right singular vectors of A^t and then\n\
* copied back to the U array. This 'W' option is just\n\
* a reminder to the caller that in this case V is\n\
* reserved as workspace of length N*N.\n\
* If JOBV = 'N' V is not referenced.\n\
*\n\
* LDV (input) INTEGER\n\
* The leading dimension of the array V, LDV >= 1.\n\
* If JOBV = 'V' or 'J' or 'W', then LDV >= N.\n\
*\n\
* WORK (workspace/output) DOUBLE PRECISION array, dimension at least LWORK.\n\
* On exit,\n\
* WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such\n\
* that SCALE*SVA(1:N) are the computed singular values\n\
* of A. (See the description of SVA().)\n\
* WORK(2) = See the description of WORK(1).\n\
* WORK(3) = SCONDA is an estimate for the condition number of\n\
* column equilibrated A. (If JOBA .EQ. 'E' or 'G')\n\
* SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).\n\
* It is computed using DPOCON. It holds\n\
* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA\n\
* where R is the triangular factor from the QRF of A.\n\
* However, if R is truncated and the numerical rank is\n\
* determined to be strictly smaller than N, SCONDA is\n\
* returned as -1, thus indicating that the smallest\n\
* singular values might be lost.\n\
*\n\
* If full SVD is needed, the following two condition numbers are\n\
* useful for the analysis of the algorithm. They are provied for\n\
* a developer/implementer who is familiar with the details of\n\
* the method.\n\
*\n\
* WORK(4) = an estimate of the scaled condition number of the\n\
* triangular factor in the first QR factorization.\n\
* WORK(5) = an estimate of the scaled condition number of the\n\
* triangular factor in the second QR factorization.\n\
* The following two parameters are computed if JOBT .EQ. 'T'.\n\
* They are provided for a developer/implementer who is familiar\n\
* with the details of the method.\n\
*\n\
* WORK(6) = the entropy of A^t*A :: this is the Shannon entropy\n\
* of diag(A^t*A) / Trace(A^t*A) taken as point in the\n\
* probability simplex.\n\
* WORK(7) = the entropy of A*A^t.\n\
*\n\
* LWORK (input) INTEGER\n\
* Length of WORK to confirm proper allocation of work space.\n\
* LWORK depends on the job:\n\
*\n\
* If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and\n\
* -> .. no scaled condition estimate required ( JOBE.EQ.'N'):\n\
* LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.\n\
* For optimal performance (blocked code) the optimal value\n\
* is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal\n\
* block size for xGEQP3/xGEQRF.\n\
* -> .. an estimate of the scaled condition number of A is\n\
* required (JOBA='E', 'G'). In this case, LWORK is the maximum\n\
* of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4N,7).\n\
*\n\
* If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),\n\
* -> the minimal requirement is LWORK >= max(2*N+M,7).\n\
* -> For optimal performance, LWORK >= max(2*N+M,2*N+N*NB,7),\n\
* where NB is the optimal block size.\n\
*\n\
* If SIGMA and the left singular vectors are needed\n\
* -> the minimal requirement is LWORK >= max(2*N+M,7).\n\
* -> For optimal performance, LWORK >= max(2*N+M,2*N+N*NB,7),\n\
* where NB is the optimal block size.\n\
*\n\
* If full SVD is needed ( JOBU.EQ.'U' or 'F', JOBV.EQ.'V' ) and\n\
* -> .. the singular vectors are computed without explicit\n\
* accumulation of the Jacobi rotations, LWORK >= 6*N+2*N*N\n\
* -> .. in the iterative part, the Jacobi rotations are\n\
* explicitly accumulated (option, see the description of JOBV),\n\
* then the minimal requirement is LWORK >= max(M+3*N+N*N,7).\n\
* For better performance, if NB is the optimal block size,\n\
* LWORK >= max(3*N+N*N+M,3*N+N*N+N*NB,7).\n\
*\n\
* IWORK (workspace/output) INTEGER array, dimension M+3*N.\n\
* On exit,\n\
* IWORK(1) = the numerical rank determined after the initial\n\
* QR factorization with pivoting. See the descriptions\n\
* of JOBA and JOBR.\n\
* IWORK(2) = the number of the computed nonzero singular values\n\
* IWORK(3) = if nonzero, a warning message:\n\
* If IWORK(3).EQ.1 then some of the column norms of A\n\
* were denormalized floats. The requested high accuracy\n\
* is not warranted by the data.\n\
*\n\
* INFO (output) INTEGER\n\
* < 0 : if INFO = -i, then the i-th argument had an illegal value.\n\
* = 0 : successfull exit;\n\
* > 0 : DGEJSV did not converge in the maximal allowed number\n\
* of sweeps. The computed values may be inaccurate.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses SGEQP3,\n\
* SGEQRF, and SGELQF as preprocessors and preconditioners. Optionally, an\n\
* additional row pivoting can be used as a preprocessor, which in some\n\
* cases results in much higher accuracy. An example is matrix A with the\n\
* structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned\n\
* diagonal matrices and C is well-conditioned matrix. In that case, complete\n\
* pivoting in the first QR factorizations provides accuracy dependent on the\n\
* condition number of C, and independent of D1, D2. Such higher accuracy is\n\
* not completely understood theoretically, but it works well in practice.\n\
* Further, if A can be written as A = B*D, with well-conditioned B and some\n\
* diagonal D, then the high accuracy is guaranteed, both theoretically and\n\
* in software, independent of D. For more details see [1], [2].\n\
* The computational range for the singular values can be the full range\n\
* ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS\n\
* & LAPACK routines called by DGEJSV are implemented to work in that range.\n\
* If that is not the case, then the restriction for safe computation with\n\
* the singular values in the range of normalized IEEE numbers is that the\n\
* spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not\n\
* overflow. This code (DGEJSV) is best used in this restricted range,\n\
* meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are\n\
* returned as zeros. See JOBR for details on this.\n\
* Further, this implementation is somewhat slower than the one described\n\
* in [1,2] due to replacement of some non-LAPACK components, and because\n\
* the choice of some tuning parameters in the iterative part (DGESVJ) is\n\
* left to the implementer on a particular machine.\n\
* The rank revealing QR factorization (in this code: SGEQP3) should be\n\
* implemented as in [3]. We have a new version of SGEQP3 under development\n\
* that is more robust than the current one in LAPACK, with a cleaner cut in\n\
* rank defficient cases. It will be available in the SIGMA library [4].\n\
* If M is much larger than N, it is obvious that the inital QRF with\n\
* column pivoting can be preprocessed by the QRF without pivoting. That\n\
* well known trick is not used in DGEJSV because in some cases heavy row\n\
* weighting can be treated with complete pivoting. The overhead in cases\n\
* M much larger than N is then only due to pivoting, but the benefits in\n\
* terms of accuracy have prevailed. The implementer/user can incorporate\n\
* this extra QRF step easily. The implementer can also improve data movement\n\
* (matrix transpose, matrix copy, matrix transposed copy) - this\n\
* implementation of DGEJSV uses only the simplest, naive data movement.\n\
*\n\
* Contributors\n\
*\n\
* Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)\n\
*\n\
* References\n\
*\n\
* [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.\n\
* SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.\n\
* LAPACK Working note 169.\n\
* [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.\n\
* SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.\n\
* LAPACK Working note 170.\n\
* [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR\n\
* factorization software - a case study.\n\
* ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.\n\
* LAPACK Working note 176.\n\
* [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,\n\
* QSVD, (H,K)-SVD computations.\n\
* Department of Mathematics, University of Zagreb, 2008.\n\
*\n\
* Bugs, examples and comments\n\
* \n\
* Please report all bugs and send interesting examples and/or comments to\n\
* drmac@math.hr. Thank you.\n\
*\n\
* ==========================================================================\n\
*\n\
* .. Local Parameters ..\n DOUBLE PRECISION ZERO, ONE\n PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )\n\
* ..\n\
* .. Local Scalars ..\n DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,\n & CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, MAXPRJ, SCALEM,\n & SCONDA, SFMIN, SMALL, TEMP1, USCAL1, USCAL2, XSC\n INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING\n LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LSVEC,\n & L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,\n & NOSCAL, ROWPIV, RSVEC, TRANSP\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC DABS, DLOG, DMAX1, DMIN1, DBLE,\n & MAX0, MIN0, IDNINT, DSIGN, DSQRT\n\
* ..\n\
* .. External Functions ..\n DOUBLE PRECISION DLAMCH, DNRM2\n INTEGER IDAMAX\n LOGICAL LSAME\n EXTERNAL IDAMAX, LSAME, DLAMCH, DNRM2\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL DCOPY, DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL,\n & DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ,\n & DORMQR, DPOCON, DSCAL, DSWAP, DTRSM, XERBLA\n\
*\n EXTERNAL DGESVJ\n\
* ..\n\
*\n\
* Test the input arguments\n\
*\n LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )\n JRACC = LSAME( JOBV, 'J' )\n RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC\n ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )\n L2RANK = LSAME( JOBA, 'R' )\n L2ABER = LSAME( JOBA, 'A' )\n ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )\n L2TRAN = LSAME( JOBT, 'T' )\n L2KILL = LSAME( JOBR, 'R' )\n DEFR = LSAME( JOBR, 'N' )\n L2PERT = LSAME( JOBP, 'P' )\n\
*\n IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.\n & ERREST .OR. LSAME( JOBA, 'C' ) )) THEN\n INFO = - 1\n ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.\n & LSAME( JOBU, 'W' )) ) THEN\n INFO = - 2\n ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.\n & LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN\n INFO = - 3\n ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN\n INFO = - 4\n ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN\n INFO = - 5\n ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN\n INFO = - 6\n ELSE IF ( M .LT. 0 ) THEN\n INFO = - 7\n ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN\n INFO = - 8\n ELSE IF ( LDA .LT. M ) THEN\n INFO = - 10\n ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN\n INFO = - 13\n ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN\n INFO = - 14\n ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.\n & (LWORK .LT. MAX0(7,4*N+1,2*M+N))) .OR.\n & (.NOT.(LSVEC .OR. LSVEC) .AND. ERREST .AND.\n & (LWORK .LT. MAX0(7,4*N+N*N,2*M+N))) .OR.\n & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX0(7,2*N+M))) .OR.\n & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX0(7,2*N+M))) .OR.\n & (LSVEC .AND. RSVEC .AND. .NOT.JRACC .AND. (LWORK.LT.6*N+2*N*N))\n & .OR. (LSVEC.AND.RSVEC.AND.JRACC.AND.LWORK.LT.MAX0(7,M+3*N+N*N)))\n & THEN\n INFO = - 17\n ELSE\n\
* #:)\n INFO = 0\n END IF\n\
*\n IF ( INFO .NE. 0 ) THEN\n\
* #:(\n CALL XERBLA( 'DGEJSV', - INFO )\n END IF\n\
*\n\
* Quick return for void matrix (Y3K safe)\n\
* #:)\n IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) RETURN\n\
*\n\
* Determine whether the matrix U should be M x N or M x M\n\
*\n IF ( LSVEC ) THEN\n N1 = N\n IF ( LSAME( JOBU, 'F' ) ) N1 = M\n END IF\n\
*\n\
* Set numerical parameters\n\
*\n\
*! NOTE: Make sure DLAMCH() does not fail on the target architecture.\n\
*\n\n EPSLN = DLAMCH('Epsilon')\n SFMIN = DLAMCH('SafeMinimum')\n SMALL = SFMIN / EPSLN\n BIG = DLAMCH('O')\n\
* BIG = ONE / SFMIN\n\
*\n\
* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N\n\
*\n\
*(!) If necessary, scale SVA() to protect the largest norm from\n\
* overflow. It is possible that this scaling pushes the smallest\n\
* column norm left from the underflow threshold (extreme case).\n\
*\n SCALEM = ONE / DSQRT(DBLE(M)*DBLE(N))\n NOSCAL = .TRUE.\n GOSCAL = .TRUE.\n DO 1874 p = 1, N\n AAPP = ZERO\n AAQQ = ONE\n CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ )\n IF ( AAPP .GT. BIG ) THEN\n INFO = - 9\n CALL XERBLA( 'DGEJSV', -INFO )\n RETURN\n END IF\n AAQQ = DSQRT(AAQQ)\n IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN\n SVA(p) = AAPP * AAQQ\n ELSE\n NOSCAL = .FALSE.\n SVA(p) = AAPP * ( AAQQ * SCALEM )\n IF ( GOSCAL ) THEN\n GOSCAL = .FALSE.\n CALL DSCAL( p-1, SCALEM, SVA, 1 )\n END IF\n END IF\n 1874 CONTINUE\n\
*\n IF ( NOSCAL ) SCALEM = ONE\n\
*\n AAPP = ZERO\n AAQQ = BIG\n DO 4781 p = 1, N\n AAPP = DMAX1( AAPP, SVA(p) )\n IF ( SVA(p) .NE. ZERO ) AAQQ = DMIN1( AAQQ, SVA(p) )\n 4781 CONTINUE\n\
*\n\
* Quick return for zero M x N matrix\n\
* #:)\n IF ( AAPP .EQ. ZERO ) THEN\n IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU )\n IF ( RSVEC ) CALL DLASET( 'G', N, N, ZERO, ONE, V, LDV )\n WORK(1) = ONE\n WORK(2) = ONE\n IF ( ERREST ) WORK(3) = ONE\n IF ( LSVEC .AND. RSVEC ) THEN\n WORK(4) = ONE\n WORK(5) = ONE\n END IF\n IF ( L2TRAN ) THEN\n WORK(6) = ZERO\n WORK(7) = ZERO\n END IF\n IWORK(1) = 0\n IWORK(2) = 0\n RETURN\n END IF\n\
*\n\
* Issue warning if denormalized column norms detected. Override the\n\
* high relative accuracy request. Issue licence to kill columns\n\
* (set them to zero) whose norm is less than sigma_max / BIG (roughly).\n\
* #:(\n WARNING = 0\n IF ( AAQQ .LE. SFMIN ) THEN\n L2RANK = .TRUE.\n L2KILL = .TRUE.\n WARNING = 1\n END IF\n\
*\n\
* Quick return for one-column matrix\n\
* #:)\n IF ( N .EQ. 1 ) THEN\n\
*\n IF ( LSVEC ) THEN\n CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )\n CALL DLACPY( 'A', M, 1, A, LDA, U, LDU )\n\
* computing all M left singular vectors of the M x 1 matrix\n IF ( N1 .NE. N ) THEN\n CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR )\n CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR )\n CALL DCOPY( M, A(1,1), 1, U(1,1), 1 )\n END IF\n END IF\n IF ( RSVEC ) THEN\n V(1,1) = ONE\n END IF\n IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN\n SVA(1) = SVA(1) / SCALEM\n SCALEM = ONE\n END IF\n WORK(1) = ONE / SCALEM\n WORK(2) = ONE\n IF ( SVA(1) .NE. ZERO ) THEN\n IWORK(1) = 1\n IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN\n IWORK(2) = 1\n ELSE\n IWORK(2) = 0\n END IF\n ELSE\n IWORK(1) = 0\n IWORK(2) = 0\n END IF\n IF ( ERREST ) WORK(3) = ONE\n IF ( LSVEC .AND. RSVEC ) THEN\n WORK(4) = ONE\n WORK(5) = ONE\n END IF\n IF ( L2TRAN ) THEN\n WORK(6) = ZERO\n WORK(7) = ZERO\n END IF\n RETURN\n\
*\n END IF\n\
*\n TRANSP = .FALSE.\n L2TRAN = L2TRAN .AND. ( M .EQ. N )\n\
*\n AATMAX = -ONE\n AATMIN = BIG\n IF ( ROWPIV .OR. L2TRAN ) THEN\n\
*\n\
* Compute the row norms, needed to determine row pivoting sequence\n\
* (in the case of heavily row weighted A, row pivoting is strongly\n\
* advised) and to collect information needed to compare the\n\
* structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).\n\
*\n IF ( L2TRAN ) THEN\n DO 1950 p = 1, M\n XSC = ZERO\n TEMP1 = ONE\n CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 )\n\
* DLASSQ gets both the ell_2 and the ell_infinity norm\n\
* in one pass through the vector\n WORK(M+N+p) = XSC * SCALEM\n WORK(N+p) = XSC * (SCALEM*DSQRT(TEMP1))\n AATMAX = DMAX1( AATMAX, WORK(N+p) )\n IF (WORK(N+p) .NE. ZERO) AATMIN = DMIN1(AATMIN,WORK(N+p))\n 1950 CONTINUE\n ELSE\n DO 1904 p = 1, M\n WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) )\n AATMAX = DMAX1( AATMAX, WORK(M+N+p) )\n AATMIN = DMIN1( AATMIN, WORK(M+N+p) )\n 1904 CONTINUE\n END IF\n\
*\n END IF\n\
*\n\
* For square matrix A try to determine whether A^t would be better\n\
* input for the preconditioned Jacobi SVD, with faster convergence.\n\
* The decision is based on an O(N) function of the vector of column\n\
* and row norms of A, based on the Shannon entropy. This should give\n\
* the right choice in most cases when the difference actually matters.\n\
* It may fail and pick the slower converging side.\n\
*\n ENTRA = ZERO\n ENTRAT = ZERO\n IF ( L2TRAN ) THEN\n\
*\n XSC = ZERO\n TEMP1 = ONE\n CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )\n TEMP1 = ONE / TEMP1\n\
*\n ENTRA = ZERO\n DO 1113 p = 1, N\n BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1\n IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)\n 1113 CONTINUE\n ENTRA = - ENTRA / DLOG(DBLE(N))\n\
*\n\
* Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.\n\
* It is derived from the diagonal of A^t * A. Do the same with the\n\
* diagonal of A * A^t, compute the entropy of the corresponding\n\
* probability distribution. Note that A * A^t and A^t * A have the\n\
* same trace.\n\
*\n ENTRAT = ZERO\n DO 1114 p = N+1, N+M\n BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1\n IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)\n 1114 CONTINUE\n ENTRAT = - ENTRAT / DLOG(DBLE(M))\n\
*\n\
* Analyze the entropies and decide A or A^t. Smaller entropy\n\
* usually means better input for the algorithm.\n\
*\n TRANSP = ( ENTRAT .LT. ENTRA )\n\
*\n\
* If A^t is better than A, transpose A.\n\
*\n IF ( TRANSP ) THEN\n\
* In an optimal implementation, this trivial transpose\n\
* should be replaced with faster transpose.\n DO 1115 p = 1, N - 1\n DO 1116 q = p + 1, N\n TEMP1 = A(q,p)\n A(q,p) = A(p,q)\n A(p,q) = TEMP1\n 1116 CONTINUE\n 1115 CONTINUE\n DO 1117 p = 1, N\n WORK(M+N+p) = SVA(p)\n SVA(p) = WORK(N+p)\n 1117 CONTINUE\n TEMP1 = AAPP\n AAPP = AATMAX\n AATMAX = TEMP1\n TEMP1 = AAQQ\n AAQQ = AATMIN\n AATMIN = TEMP1\n KILL = LSVEC\n LSVEC = RSVEC\n RSVEC = KILL\n IF ( LSVEC ) N1 = N\n\
*\n ROWPIV = .TRUE.\n END IF\n\
*\n END IF\n\
* END IF L2TRAN\n\
*\n\
* Scale the matrix so that its maximal singular value remains less\n\
* than DSQRT(BIG) -- the matrix is scaled so that its maximal column\n\
* has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep\n\
* DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and\n\
* BLAS routines that, in some implementations, are not capable of\n\
* working in the full interval [SFMIN,BIG] and that they may provoke\n\
* overflows in the intermediate results. If the singular values spread\n\
* from SFMIN to BIG, then DGESVJ will compute them. So, in that case,\n\
* one should use DGESVJ instead of DGEJSV.\n\
*\n BIG1 = DSQRT( BIG )\n TEMP1 = DSQRT( BIG / DBLE(N) )\n\
*\n CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )\n IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN\n AAQQ = ( AAQQ / AAPP ) * TEMP1\n ELSE\n AAQQ = ( AAQQ * TEMP1 ) / AAPP\n END IF\n TEMP1 = TEMP1 * SCALEM\n CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )\n\
*\n\
* To undo scaling at the end of this procedure, multiply the\n\
* computed singular values with USCAL2 / USCAL1.\n\
*\n USCAL1 = TEMP1\n USCAL2 = AAPP\n\
*\n IF ( L2KILL ) THEN\n\
* L2KILL enforces computation of nonzero singular values in\n\
* the restricted range of condition number of the initial A,\n\
* sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN).\n XSC = DSQRT( SFMIN )\n ELSE\n XSC = SMALL\n\
*\n\
* Now, if the condition number of A is too big,\n\
* sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN,\n\
* as a precaution measure, the full SVD is computed using DGESVJ\n\
* with accumulated Jacobi rotations. This provides numerically\n\
* more robust computation, at the cost of slightly increased run\n\
* time. Depending on the concrete implementation of BLAS and LAPACK\n\
* (i.e. how they behave in presence of extreme ill-conditioning) the\n\
* implementor may decide to remove this switch.\n IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN\n JRACC = .TRUE.\n END IF\n\
*\n END IF\n IF ( AAQQ .LT. XSC ) THEN\n DO 700 p = 1, N\n IF ( SVA(p) .LT. XSC ) THEN\n CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )\n SVA(p) = ZERO\n END IF\n 700 CONTINUE\n END IF\n\
*\n\
* Preconditioning using QR factorization with pivoting\n\
*\n IF ( ROWPIV ) THEN\n\
* Optional row permutation (Bjoerck row pivoting):\n\
* A result by Cox and Higham shows that the Bjoerck's\n\
* row pivoting combined with standard column pivoting\n\
* has similar effect as Powell-Reid complete pivoting.\n\
* The ell-infinity norms of A are made nonincreasing.\n DO 1952 p = 1, M - 1\n q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1\n IWORK(2*N+p) = q\n IF ( p .NE. q ) THEN\n TEMP1 = WORK(M+N+p)\n WORK(M+N+p) = WORK(M+N+q)\n WORK(M+N+q) = TEMP1\n END IF\n 1952 CONTINUE\n CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )\n END IF\n\
*\n\
* End of the preparation phase (scaling, optional sorting and\n\
* transposing, optional flushing of small columns).\n\
*\n\
* Preconditioning\n\
*\n\
* If the full SVD is needed, the right singular vectors are computed\n\
* from a matrix equation, and for that we need theoretical analysis\n\
* of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF.\n\
* In all other cases the first RR QRF can be chosen by other criteria\n\
* (eg speed by replacing global with restricted window pivoting, such\n\
* as in SGEQPX from TOMS # 782). Good results will be obtained using\n\
* SGEQPX with properly (!) chosen numerical parameters.\n\
* Any improvement of DGEQP3 improves overal performance of DGEJSV.\n\
*\n\
* A * P1 = Q1 * [ R1^t 0]^t:\n DO 1963 p = 1, N\n\
* .. all columns are free columns\n IWORK(p) = 0\n 1963 CONTINUE\n CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )\n\
*\n\
* The upper triangular matrix R1 from the first QRF is inspected for\n\
* rank deficiency and possibilities for deflation, or possible\n\
* ill-conditioning. Depending on the user specified flag L2RANK,\n\
* the procedure explores possibilities to reduce the numerical\n\
* rank by inspecting the computed upper triangular factor. If\n\
* L2RANK or L2ABER are up, then DGEJSV will compute the SVD of\n\
* A + dA, where ||dA|| <= f(M,N)*EPSLN.\n\
*\n NR = 1\n IF ( L2ABER ) THEN\n\
* Standard absolute error bound suffices. All sigma_i with\n\
* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an\n\
* agressive enforcement of lower numerical rank by introducing a\n\
* backward error of the order of N*EPSLN*||A||.\n TEMP1 = DSQRT(DBLE(N))*EPSLN\n DO 3001 p = 2, N\n IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN\n NR = NR + 1\n ELSE\n GO TO 3002\n END IF\n 3001 CONTINUE\n 3002 CONTINUE\n ELSE IF ( L2RANK ) THEN\n\
* .. similarly as above, only slightly more gentle (less agressive).\n\
* Sudden drop on the diagonal of R1 is used as the criterion for\n\
* close-to-rank-defficient.\n TEMP1 = DSQRT(SFMIN)\n DO 3401 p = 2, N\n IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR.\n & ( DABS(A(p,p)) .LT. SMALL ) .OR.\n & ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402\n NR = NR + 1\n 3401 CONTINUE\n 3402 CONTINUE\n\
*\n ELSE\n\
* The goal is high relative accuracy. However, if the matrix\n\
* has high scaled condition number the relative accuracy is in\n\
* general not feasible. Later on, a condition number estimator\n\
* will be deployed to estimate the scaled condition number.\n\
* Here we just remove the underflowed part of the triangular\n\
* factor. This prevents the situation in which the code is\n\
* working hard to get the accuracy not warranted by the data.\n TEMP1 = DSQRT(SFMIN)\n DO 3301 p = 2, N\n IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR.\n & ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302\n NR = NR + 1\n 3301 CONTINUE\n 3302 CONTINUE\n\
*\n END IF\n\
*\n ALMORT = .FALSE.\n IF ( NR .EQ. N ) THEN\n MAXPRJ = ONE\n DO 3051 p = 2, N\n TEMP1 = DABS(A(p,p)) / SVA(IWORK(p))\n MAXPRJ = DMIN1( MAXPRJ, TEMP1 )\n 3051 CONTINUE\n IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.\n END IF\n\
*\n\
*\n SCONDA = - ONE\n CONDR1 = - ONE\n CONDR2 = - ONE\n\
*\n IF ( ERREST ) THEN\n IF ( N .EQ. NR ) THEN\n IF ( RSVEC ) THEN\n\
* .. V is available as workspace\n CALL DLACPY( 'U', N, N, A, LDA, V, LDV )\n DO 3053 p = 1, N\n TEMP1 = SVA(IWORK(p))\n CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 )\n 3053 CONTINUE\n CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1,\n & WORK(N+1), IWORK(2*N+M+1), IERR )\n ELSE IF ( LSVEC ) THEN\n\
* .. U is available as workspace\n CALL DLACPY( 'U', N, N, A, LDA, U, LDU )\n DO 3054 p = 1, N\n TEMP1 = SVA(IWORK(p))\n CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 )\n 3054 CONTINUE\n CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1,\n & WORK(N+1), IWORK(2*N+M+1), IERR )\n ELSE\n CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N )\n DO 3052 p = 1, N\n TEMP1 = SVA(IWORK(p))\n CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )\n 3052 CONTINUE\n\
* .. the columns of R are scaled to have unit Euclidean lengths.\n CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,\n & WORK(N+N*N+1), IWORK(2*N+M+1), IERR )\n END IF\n SCONDA = ONE / DSQRT(TEMP1)\n\
* SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).\n\
* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA\n ELSE\n SCONDA = - ONE\n END IF\n END IF\n\
*\n L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )\n\
* If there is no violent scaling, artificial perturbation is not needed.\n\
*\n\
* Phase 3:\n\
*\n\n IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN\n\
*\n\
* Singular Values only\n\
*\n\
* .. transpose A(1:NR,1:N)\n DO 1946 p = 1, MIN0( N-1, NR )\n CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )\n 1946 CONTINUE\n\
*\n\
* The following two DO-loops introduce small relative perturbation\n\
* into the strict upper triangle of the lower triangular matrix.\n\
* Small entries below the main diagonal are also changed.\n\
* This modification is useful if the computing environment does not\n\
* provide/allow FLUSH TO ZERO underflow, for it prevents many\n\
* annoying denormalized numbers in case of strongly scaled matrices.\n\
* The perturbation is structured so that it does not introduce any\n\
* new perturbation of the singular values, and it does not destroy\n\
* the job done by the preconditioner.\n\
* The licence for this perturbation is in the variable L2PERT, which\n\
* should be .FALSE. if FLUSH TO ZERO underflow is active.\n\
*\n IF ( .NOT. ALMORT ) THEN\n\
*\n IF ( L2PERT ) THEN\n\
* XSC = DSQRT(SMALL)\n XSC = EPSLN / DBLE(N)\n DO 4947 q = 1, NR\n TEMP1 = XSC*DABS(A(q,q))\n DO 4949 p = 1, N\n IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )\n & .OR. ( p .LT. q ) )\n & A(p,q) = DSIGN( TEMP1, A(p,q) )\n 4949 CONTINUE\n 4947 CONTINUE\n ELSE\n CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )\n END IF\n\
*\n\
* .. second preconditioning using the QR factorization\n\
*\n CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )\n\
*\n\
* .. and transpose upper to lower triangular\n DO 1948 p = 1, NR - 1\n CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )\n 1948 CONTINUE\n\
*\n END IF\n\
*\n\
* Row-cyclic Jacobi SVD algorithm with column pivoting\n\
*\n\
* .. again some perturbation (a \"background noise\") is added\n\
* to drown denormals\n IF ( L2PERT ) THEN\n\
* XSC = DSQRT(SMALL)\n XSC = EPSLN / DBLE(N)\n DO 1947 q = 1, NR\n TEMP1 = XSC*DABS(A(q,q))\n DO 1949 p = 1, NR\n IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )\n & .OR. ( p .LT. q ) )\n & A(p,q) = DSIGN( TEMP1, A(p,q) )\n 1949 CONTINUE\n 1947 CONTINUE\n ELSE\n CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA )\n END IF\n\
*\n\
* .. and one-sided Jacobi rotations are started on a lower\n\
* triangular matrix (plus perturbation which is ignored in\n\
* the part which destroys triangular form (confusing?!))\n\
*\n CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,\n & N, V, LDV, WORK, LWORK, INFO )\n\
*\n SCALEM = WORK(1)\n NUMRANK = IDNINT(WORK(2))\n\
*\n\
*\n ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN\n\
*\n\
* -> Singular Values and Right Singular Vectors <-\n\
*\n IF ( ALMORT ) THEN\n\
*\n\
* .. in this case NR equals N\n DO 1998 p = 1, NR\n CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )\n 1998 CONTINUE\n CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n\
*\n CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,\n & WORK, LWORK, INFO )\n SCALEM = WORK(1)\n NUMRANK = IDNINT(WORK(2))\n\n ELSE\n\
*\n\
* .. two more QR factorizations ( one QRF is not enough, two require\n\
* accumulated product of Jacobi rotations, three are perfect )\n\
*\n CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA )\n CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)\n CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV )\n CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n DO 8998 p = 1, NR\n CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )\n 8998 CONTINUE\n CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n\
*\n CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,\n & LDU, WORK(N+1), LWORK, INFO )\n SCALEM = WORK(N+1)\n NUMRANK = IDNINT(WORK(N+2))\n IF ( NR .LT. N ) THEN\n CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1), LDV )\n CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1), LDV )\n CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV )\n END IF\n\
*\n CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,\n & V, LDV, WORK(N+1), LWORK-N, IERR )\n\
*\n END IF\n\
*\n DO 8991 p = 1, N\n CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )\n 8991 CONTINUE\n CALL DLACPY( 'All', N, N, A, LDA, V, LDV )\n\
*\n IF ( TRANSP ) THEN\n CALL DLACPY( 'All', N, N, V, LDV, U, LDU )\n END IF\n\
*\n ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN\n\
*\n\
* .. Singular Values and Left Singular Vectors ..\n\
*\n\
* .. second preconditioning step to avoid need to accumulate\n\
* Jacobi rotations in the Jacobi iterations.\n DO 1965 p = 1, NR\n CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )\n 1965 CONTINUE\n CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )\n\
*\n CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n\
*\n DO 1967 p = 1, NR - 1\n CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )\n 1967 CONTINUE\n CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )\n\
*\n CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,\n & LDA, WORK(N+1), LWORK-N, INFO )\n SCALEM = WORK(N+1)\n NUMRANK = IDNINT(WORK(N+2))\n\
*\n IF ( NR .LT. M ) THEN\n CALL DLASET( 'A', M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )\n IF ( NR .LT. N1 ) THEN\n CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU )\n CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU )\n END IF\n END IF\n\
*\n CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n\
*\n IF ( ROWPIV )\n & CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n\
*\n DO 1974 p = 1, N1\n XSC = ONE / DNRM2( M, U(1,p), 1 )\n CALL DSCAL( M, XSC, U(1,p), 1 )\n 1974 CONTINUE\n\
*\n IF ( TRANSP ) THEN\n CALL DLACPY( 'All', N, N, U, LDU, V, LDV )\n END IF\n\
*\n ELSE\n\
*\n\
* .. Full SVD ..\n\
*\n IF ( .NOT. JRACC ) THEN\n\
*\n IF ( .NOT. ALMORT ) THEN\n\
*\n\
* Second Preconditioning Step (QRF [with pivoting])\n\
* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is\n\
* equivalent to an LQF CALL. Since in many libraries the QRF\n\
* seems to be better optimized than the LQF, we do explicit\n\
* transpose and use the QRF. This is subject to changes in an\n\
* optimized implementation of DGEJSV.\n\
*\n DO 1968 p = 1, NR\n CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )\n 1968 CONTINUE\n\
*\n\
* .. the following two loops perturb small entries to avoid\n\
* denormals in the second QR factorization, where they are\n\
* as good as zeros. This is done to avoid painfully slow\n\
* computation with denormals. The relative size of the perturbation\n\
* is a parameter that can be changed by the implementer.\n\
* This perturbation device will be obsolete on machines with\n\
* properly implemented arithmetic.\n\
* To switch it off, set L2PERT=.FALSE. To remove it from the\n\
* code, remove the action under L2PERT=.TRUE., leave the ELSE part.\n\
* The following two loops should be blocked and fused with the\n\
* transposed copy above.\n\
*\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)\n DO 2969 q = 1, NR\n TEMP1 = XSC*DABS( V(q,q) )\n DO 2968 p = 1, N\n IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )\n & .OR. ( p .LT. q ) )\n & V(p,q) = DSIGN( TEMP1, V(p,q) )\n IF ( p. LT. q ) V(p,q) = - V(p,q)\n 2968 CONTINUE\n 2969 CONTINUE\n ELSE\n CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n END IF\n\
*\n\
* Estimate the row scaled condition number of R1\n\
* (If R1 is rectangular, N > NR, then the condition number\n\
* of the leading NR x NR submatrix is estimated.)\n\
*\n CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )\n DO 3950 p = 1, NR\n TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)\n CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)\n 3950 CONTINUE\n CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,\n & WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)\n CONDR1 = ONE / DSQRT(TEMP1)\n\
* .. here need a second oppinion on the condition number\n\
* .. then assume worst case scenario\n\
* R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)\n\
* more conservative <=> CONDR1 .LT. DSQRT(DBLE(N))\n\
*\n COND_OK = DSQRT(DBLE(NR))\n\
*[TP] COND_OK is a tuning parameter.\n\n IF ( CONDR1 .LT. COND_OK ) THEN\n\
* .. the second QRF without pivoting. Note: in an optimized\n\
* implementation, this QRF should be implemented as the QRF\n\
* of a lower triangular matrix.\n\
* R1^t = Q2 * R2\n CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n\
*\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)/EPSLN\n DO 3959 p = 2, NR\n DO 3958 q = 1, p - 1\n TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q)))\n IF ( DABS(V(q,p)) .LE. TEMP1 )\n & V(q,p) = DSIGN( TEMP1, V(q,p) )\n 3958 CONTINUE\n 3959 CONTINUE\n END IF\n\
*\n IF ( NR .NE. N )\n\
* .. save ...\n & CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )\n\
*\n\
* .. this transposed copy should be better than naive\n DO 1969 p = 1, NR - 1\n CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )\n 1969 CONTINUE\n\
*\n CONDR2 = CONDR1\n\
*\n ELSE\n\
*\n\
* .. ill-conditioned case: second QRF with pivoting\n\
* Note that windowed pivoting would be equaly good\n\
* numerically, and more run-time efficient. So, in\n\
* an optimal implementation, the next call to DGEQP3\n\
* should be replaced with eg. CALL SGEQPX (ACM TOMS #782)\n\
* with properly (carefully) chosen parameters.\n\
*\n\
* R1^t * P2 = Q2 * R2\n DO 3003 p = 1, NR\n IWORK(N+p) = 0\n 3003 CONTINUE\n CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),\n & WORK(2*N+1), LWORK-2*N, IERR )\n\
** CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n\
** & LWORK-2*N, IERR )\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)\n DO 3969 p = 2, NR\n DO 3968 q = 1, p - 1\n TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q)))\n IF ( DABS(V(q,p)) .LE. TEMP1 )\n & V(q,p) = DSIGN( TEMP1, V(q,p) )\n 3968 CONTINUE\n 3969 CONTINUE\n END IF\n\
*\n CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )\n\
*\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)\n DO 8970 p = 2, NR\n DO 8971 q = 1, p - 1\n TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q)))\n V(p,q) = - DSIGN( TEMP1, V(q,p) )\n 8971 CONTINUE\n 8970 CONTINUE\n ELSE\n CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )\n END IF\n\
* Now, compute R2 = L3 * Q3, the LQ factorization.\n CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),\n & WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )\n\
* .. and estimate the condition number\n CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )\n DO 4950 p = 1, NR\n TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR )\n CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )\n 4950 CONTINUE\n CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,\n & WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )\n CONDR2 = ONE / DSQRT(TEMP1)\n\
*\n IF ( CONDR2 .GE. COND_OK ) THEN\n\
* .. save the Householder vectors used for Q3\n\
* (this overwrittes the copy of R2, as it will not be\n\
* needed in this branch, but it does not overwritte the\n\
* Huseholder vectors of Q2.).\n CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )\n\
* .. and the rest of the information on Q3 is in\n\
* WORK(2*N+N*NR+1:2*N+N*NR+N)\n END IF\n\
*\n END IF\n\
*\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)\n DO 4968 q = 2, NR\n TEMP1 = XSC * V(q,q)\n DO 4969 p = 1, q - 1\n\
* V(p,q) = - DSIGN( TEMP1, V(q,p) )\n V(p,q) = - DSIGN( TEMP1, V(p,q) )\n 4969 CONTINUE\n 4968 CONTINUE\n ELSE\n CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )\n END IF\n\
*\n\
* Second preconditioning finished; continue with Jacobi SVD\n\
* The input matrix is lower trinagular.\n\
*\n\
* Recover the right singular vectors as solution of a well\n\
* conditioned triangular matrix equation.\n\
*\n IF ( CONDR1 .LT. COND_OK ) THEN\n\
*\n CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,\n & LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )\n SCALEM = WORK(2*N+N*NR+NR+1)\n NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))\n DO 3970 p = 1, NR\n CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )\n CALL DSCAL( NR, SVA(p), V(1,p), 1 )\n 3970 CONTINUE\n\n\
* .. pick the right matrix equation and solve it\n\
*\n IF ( NR. EQ. N ) THEN\n\
* :)) .. best case, R1 is inverted. The solution of this matrix\n\
* equation is Q2*V2 = the product of the Jacobi rotations\n\
* used in DGESVJ, premultiplied with the orthogonal matrix\n\
* from the second QR factorization.\n CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV )\n ELSE\n\
* .. R1 is well conditioned, but non-square. Transpose(R2)\n\
* is inverted to get the product of the Jacobi rotations\n\
* used in DGESVJ. The Q-factor from the second QR\n\
* factorization is then built in explicitly.\n CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),\n & N,V,LDV)\n IF ( NR .LT. N ) THEN\n CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)\n CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)\n CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)\n END IF\n CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)\n END IF\n\
*\n ELSE IF ( CONDR2 .LT. COND_OK ) THEN\n\
*\n\
* :) .. the input matrix A is very likely a relative of\n\
* the Kahan matrix :)\n\
* The matrix R2 is inverted. The solution of the matrix equation\n\
* is Q3^T*V3 = the product of the Jacobi rotations (appplied to\n\
* the lower triangular L3 from the LQ factorization of\n\
* R2=L3*Q3), pre-multiplied with the transposed Q3.\n CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,\n & LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )\n SCALEM = WORK(2*N+N*NR+NR+1)\n NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))\n DO 3870 p = 1, NR\n CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )\n CALL DSCAL( NR, SVA(p), U(1,p), 1 )\n 3870 CONTINUE\n CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU)\n\
* .. apply the permutation from the second QR factorization\n DO 873 q = 1, NR\n DO 872 p = 1, NR\n WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)\n 872 CONTINUE\n DO 874 p = 1, NR\n U(p,q) = WORK(2*N+N*NR+NR+p)\n 874 CONTINUE\n 873 CONTINUE\n IF ( NR .LT. N ) THEN\n CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )\n CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )\n CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )\n END IF\n CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )\n ELSE\n\
* Last line of defense.\n\
* #:( This is a rather pathological case: no scaled condition\n\
* improvement after two pivoted QR factorizations. Other\n\
* possibility is that the rank revealing QR factorization\n\
* or the condition estimator has failed, or the COND_OK\n\
* is set very close to ONE (which is unnecessary). Normally,\n\
* this branch should never be executed, but in rare cases of\n\
* failure of the RRQR or condition estimator, the last line of\n\
* defense ensures that DGEJSV completes the task.\n\
* Compute the full SVD of L3 using DGESVJ with explicit\n\
* accumulation of Jacobi rotations.\n CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,\n & LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )\n SCALEM = WORK(2*N+N*NR+NR+1)\n NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))\n IF ( NR .LT. N ) THEN\n CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )\n CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )\n CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )\n END IF\n CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )\n\
*\n CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,\n & WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),\n & LWORK-2*N-N*NR-NR, IERR )\n DO 773 q = 1, NR\n DO 772 p = 1, NR\n WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)\n 772 CONTINUE\n DO 774 p = 1, NR\n U(p,q) = WORK(2*N+N*NR+NR+p)\n 774 CONTINUE\n 773 CONTINUE\n\
*\n END IF\n\
*\n\
* Permute the rows of V using the (column) permutation from the\n\
* first QRF. Also, scale the columns to make them unit in\n\
* Euclidean norm. This applies to all cases.\n\
*\n TEMP1 = DSQRT(DBLE(N)) * EPSLN\n DO 1972 q = 1, N\n DO 972 p = 1, N\n WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)\n 972 CONTINUE\n DO 973 p = 1, N\n V(p,q) = WORK(2*N+N*NR+NR+p)\n 973 CONTINUE\n XSC = ONE / DNRM2( N, V(1,q), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL DSCAL( N, XSC, V(1,q), 1 )\n 1972 CONTINUE\n\
* At this moment, V contains the right singular vectors of A.\n\
* Next, assemble the left singular vector matrix U (M x N).\n IF ( NR .LT. M ) THEN\n CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )\n IF ( NR .LT. N1 ) THEN\n CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)\n CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU)\n END IF\n END IF\n\
*\n\
* The Q matrix from the first QRF is built into the left singular\n\
* matrix U. This applies to all cases.\n\
*\n CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n\n\
* The columns of U are normalized. The cost is O(M*N) flops.\n TEMP1 = DSQRT(DBLE(M)) * EPSLN\n DO 1973 p = 1, NR\n XSC = ONE / DNRM2( M, U(1,p), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL DSCAL( M, XSC, U(1,p), 1 )\n 1973 CONTINUE\n\
*\n\
* If the initial QRF is computed with row pivoting, the left\n\
* singular vectors must be adjusted.\n\
*\n IF ( ROWPIV )\n & CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n\
*\n ELSE\n\
*\n\
* .. the initial matrix A has almost orthogonal columns and\n\
* the second QRF is not needed\n\
*\n CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)\n DO 5970 p = 2, N\n TEMP1 = XSC * WORK( N + (p-1)*N + p )\n DO 5971 q = 1, p - 1\n WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q))\n 5971 CONTINUE\n 5970 CONTINUE\n ELSE\n CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )\n END IF\n\
*\n CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,\n & N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )\n\
*\n SCALEM = WORK(N+N*N+1)\n NUMRANK = IDNINT(WORK(N+N*N+2))\n DO 6970 p = 1, N\n CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )\n CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )\n 6970 CONTINUE\n\
*\n CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,\n & ONE, A, LDA, WORK(N+1), N )\n DO 6972 p = 1, N\n CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )\n 6972 CONTINUE\n TEMP1 = DSQRT(DBLE(N))*EPSLN\n DO 6971 p = 1, N\n XSC = ONE / DNRM2( N, V(1,p), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL DSCAL( N, XSC, V(1,p), 1 )\n 6971 CONTINUE\n\
*\n\
* Assemble the left singular vector matrix U (M x N).\n\
*\n IF ( N .LT. M ) THEN\n CALL DLASET( 'A', M-N, N, ZERO, ZERO, U(N+1,1), LDU )\n IF ( N .LT. N1 ) THEN\n CALL DLASET( 'A',N, N1-N, ZERO, ZERO, U(1,N+1),LDU )\n CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU )\n END IF\n END IF\n CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n TEMP1 = DSQRT(DBLE(M))*EPSLN\n DO 6973 p = 1, N1\n XSC = ONE / DNRM2( M, U(1,p), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL DSCAL( M, XSC, U(1,p), 1 )\n 6973 CONTINUE\n\
*\n IF ( ROWPIV )\n & CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n\
*\n END IF\n\
*\n\
* end of the >> almost orthogonal case << in the full SVD\n\
*\n ELSE\n\
*\n\
* This branch deploys a preconditioned Jacobi SVD with explicitly\n\
* accumulated rotations. It is included as optional, mainly for\n\
* experimental purposes. It does perfom well, and can also be used.\n\
* In this implementation, this branch will be automatically activated\n\
* if the condition number sigma_max(A) / sigma_min(A) is predicted\n\
* to be greater than the overflow threshold. This is because the\n\
* a posteriori computation of the singular vectors assumes robust\n\
* implementation of BLAS and some LAPACK procedures, capable of working\n\
* in presence of extreme values. Since that is not always the case, ...\n\
*\n DO 7968 p = 1, NR\n CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )\n 7968 CONTINUE\n\
*\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL/EPSLN)\n DO 5969 q = 1, NR\n TEMP1 = XSC*DABS( V(q,q) )\n DO 5968 p = 1, N\n IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )\n & .OR. ( p .LT. q ) )\n & V(p,q) = DSIGN( TEMP1, V(p,q) )\n IF ( p. LT. q ) V(p,q) = - V(p,q)\n 5968 CONTINUE\n 5969 CONTINUE\n ELSE\n CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n END IF\n\n CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )\n\
*\n DO 7969 p = 1, NR\n CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )\n 7969 CONTINUE\n\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL/EPSLN)\n DO 9970 q = 2, NR\n DO 9971 p = 1, q - 1\n TEMP1 = XSC * DMIN1(DABS(U(p,p)),DABS(U(q,q)))\n U(p,q) = - DSIGN( TEMP1, U(q,p) )\n 9971 CONTINUE\n 9970 CONTINUE\n ELSE\n CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )\n END IF\n\n CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA,\n & N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )\n SCALEM = WORK(2*N+N*NR+1)\n NUMRANK = IDNINT(WORK(2*N+N*NR+2))\n\n IF ( NR .LT. N ) THEN\n CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )\n CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )\n CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )\n END IF\n\n CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )\n\
*\n\
* Permute the rows of V using the (column) permutation from the\n\
* first QRF. Also, scale the columns to make them unit in\n\
* Euclidean norm. This applies to all cases.\n\
*\n TEMP1 = DSQRT(DBLE(N)) * EPSLN\n DO 7972 q = 1, N\n DO 8972 p = 1, N\n WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)\n 8972 CONTINUE\n DO 8973 p = 1, N\n V(p,q) = WORK(2*N+N*NR+NR+p)\n 8973 CONTINUE\n XSC = ONE / DNRM2( N, V(1,q), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL DSCAL( N, XSC, V(1,q), 1 )\n 7972 CONTINUE\n\
*\n\
* At this moment, V contains the right singular vectors of A.\n\
* Next, assemble the left singular vector matrix U (M x N).\n\
*\n IF ( NR .LT. M ) THEN\n CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )\n IF ( NR .LT. N1 ) THEN\n CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1),LDU )\n CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU )\n END IF\n END IF\n\
*\n CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n\
*\n IF ( ROWPIV )\n & CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n\
*\n\
*\n END IF\n IF ( TRANSP ) THEN\n\
* .. swap U and V because the procedure worked on A^t\n DO 6974 p = 1, N\n CALL DSWAP( N, U(1,p), 1, V(1,p), 1 )\n 6974 CONTINUE\n END IF\n\
*\n END IF\n\
* end of the full SVD\n\
*\n\
* Undo scaling, if necessary (and possible)\n\
*\n IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN\n CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )\n USCAL1 = ONE\n USCAL2 = ONE\n END IF\n\
*\n IF ( NR .LT. N ) THEN\n DO 3004 p = NR+1, N\n SVA(p) = ZERO\n 3004 CONTINUE\n END IF\n\
*\n WORK(1) = USCAL2 * SCALEM\n WORK(2) = USCAL1\n IF ( ERREST ) WORK(3) = SCONDA\n IF ( LSVEC .AND. RSVEC ) THEN\n WORK(4) = CONDR1\n WORK(5) = CONDR2\n END IF\n IF ( L2TRAN ) THEN\n WORK(6) = ENTRA\n WORK(7) = ENTRAT\n END IF\n\
*\n IWORK(1) = NR\n IWORK(2) = NUMRANK\n IWORK(3) = WARNING\n\
*\n RETURN\n\
* ..\n\
* .. END OF DGEJSV\n\
* ..\n END\n\
*\n"
|