1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
---
:name: dgelsd
:md5sum: 491fcb0747c66a3474c70cafe89194ae
:category: :subroutine
:arguments:
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: doublereal
:intent: input/output
:dims:
- m
- nrhs
:outdims:
- n
- nrhs
- ldb:
:type: integer
:intent: input
- s:
:type: doublereal
:intent: output
:dims:
- MIN(m,n)
- rcond:
:type: doublereal
:intent: input
- rank:
:type: integer
:intent: output
- work:
:type: doublereal
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: "m>=n ? 12*n + 2*n*smlsiz + 8*n*nlvl + n*nrhs + (smlsiz+1)*(smlsiz+1) : 12*m + 2*m*smlsiz + 8*m*nlvl + m*nrhs + (smlsiz+1)*(smlsiz+1)"
- iwork:
:type: integer
:intent: workspace
:dims:
- MAX(1,liwork)
- info:
:type: integer
:intent: output
:substitutions:
m: lda
ldb: MAX(m,n)
c__9: "9"
c__0: "0"
liwork: 3*(MIN(m,n))*nlvl+11*(MIN(m,n))
nlvl: MAX(0,((int)(log(((double)(MIN(m,n)))/(smlsiz+1))/log(2.0))+1))
smlsiz: ilaenv_(&c__9,"DGELSD"," ",&c__0,&c__0,&c__0,&c__0)
:fortran_help: " SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, IWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DGELSD computes the minimum-norm solution to a real linear least\n\
* squares problem:\n\
* minimize 2-norm(| b - A*x |)\n\
* using the singular value decomposition (SVD) of A. A is an M-by-N\n\
* matrix which may be rank-deficient.\n\
*\n\
* Several right hand side vectors b and solution vectors x can be\n\
* handled in a single call; they are stored as the columns of the\n\
* M-by-NRHS right hand side matrix B and the N-by-NRHS solution\n\
* matrix X.\n\
*\n\
* The problem is solved in three steps:\n\
* (1) Reduce the coefficient matrix A to bidiagonal form with\n\
* Householder transformations, reducing the original problem\n\
* into a \"bidiagonal least squares problem\" (BLS)\n\
* (2) Solve the BLS using a divide and conquer approach.\n\
* (3) Apply back all the Householder transformations to solve\n\
* the original least squares problem.\n\
*\n\
* The effective rank of A is determined by treating as zero those\n\
* singular values which are less than RCOND times the largest singular\n\
* value.\n\
*\n\
* The divide and conquer algorithm makes very mild assumptions about\n\
* floating point arithmetic. It will work on machines with a guard\n\
* digit in add/subtract, or on those binary machines without guard\n\
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n\
* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n\
* without guard digits, but we know of none.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of A. N >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrices B and X. NRHS >= 0.\n\
*\n\
* A (input) DOUBLE PRECISION array, dimension (LDA,N)\n\
* On entry, the M-by-N matrix A.\n\
* On exit, A has been destroyed.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)\n\
* On entry, the M-by-NRHS right hand side matrix B.\n\
* On exit, B is overwritten by the N-by-NRHS solution\n\
* matrix X. If m >= n and RANK = n, the residual\n\
* sum-of-squares for the solution in the i-th column is given\n\
* by the sum of squares of elements n+1:m in that column.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,max(M,N)).\n\
*\n\
* S (output) DOUBLE PRECISION array, dimension (min(M,N))\n\
* The singular values of A in decreasing order.\n\
* The condition number of A in the 2-norm = S(1)/S(min(m,n)).\n\
*\n\
* RCOND (input) DOUBLE PRECISION\n\
* RCOND is used to determine the effective rank of A.\n\
* Singular values S(i) <= RCOND*S(1) are treated as zero.\n\
* If RCOND < 0, machine precision is used instead.\n\
*\n\
* RANK (output) INTEGER\n\
* The effective rank of A, i.e., the number of singular values\n\
* which are greater than RCOND*S(1).\n\
*\n\
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK. LWORK must be at least 1.\n\
* The exact minimum amount of workspace needed depends on M,\n\
* N and NRHS. As long as LWORK is at least\n\
* 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,\n\
* if M is greater than or equal to N or\n\
* 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,\n\
* if M is less than N, the code will execute correctly.\n\
* SMLSIZ is returned by ILAENV and is equal to the maximum\n\
* size of the subproblems at the bottom of the computation\n\
* tree (usually about 25), and\n\
* NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )\n\
* For good performance, LWORK should generally be larger.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK))\n\
* LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),\n\
* where MINMN = MIN( M,N ).\n\
* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: the algorithm for computing the SVD failed to converge;\n\
* if INFO = i, i off-diagonal elements of an intermediate\n\
* bidiagonal form did not converge to zero.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Ming Gu and Ren-Cang Li, Computer Science Division, University of\n\
* California at Berkeley, USA\n\
* Osni Marques, LBNL/NERSC, USA\n\
*\n\
* =====================================================================\n\
*\n"
|