File: dgelss

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (149 lines) | stat: -rwxr-xr-x 4,982 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
--- 
:name: dgelss
:md5sum: ba7d9a1ddb43c981531b0f82a0a65fd4
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- nrhs: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - m
    - nrhs
    :outdims:
    - n
    - nrhs
- ldb: 
    :type: integer
    :intent: input
- s: 
    :type: doublereal
    :intent: output
    :dims: 
    - MIN(m,n)
- rcond: 
    :type: doublereal
    :intent: input
- rank: 
    :type: integer
    :intent: output
- work: 
    :type: doublereal
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: 3*MIN(m,n) + MAX(MAX(2*MIN(m,n),MAX(m,n)),nrhs)
- info: 
    :type: integer
    :intent: output
:substitutions: 
  m: lda
  ldb: MAX(m,n)
:fortran_help: "      SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DGELSS computes the minimum norm solution to a real linear least\n\
  *  squares problem:\n\
  *\n\
  *  Minimize 2-norm(| b - A*x |).\n\
  *\n\
  *  using the singular value decomposition (SVD) of A. A is an M-by-N\n\
  *  matrix which may be rank-deficient.\n\
  *\n\
  *  Several right hand side vectors b and solution vectors x can be\n\
  *  handled in a single call; they are stored as the columns of the\n\
  *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix\n\
  *  X.\n\
  *\n\
  *  The effective rank of A is determined by treating as zero those\n\
  *  singular values which are less than RCOND times the largest singular\n\
  *  value.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A. M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix A. N >= 0.\n\
  *\n\
  *  NRHS    (input) INTEGER\n\
  *          The number of right hand sides, i.e., the number of columns\n\
  *          of the matrices B and X. NRHS >= 0.\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
  *          On entry, the M-by-N matrix A.\n\
  *          On exit, the first min(m,n) rows of A are overwritten with\n\
  *          its right singular vectors, stored rowwise.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)\n\
  *          On entry, the M-by-NRHS right hand side matrix B.\n\
  *          On exit, B is overwritten by the N-by-NRHS solution\n\
  *          matrix X.  If m >= n and RANK = n, the residual\n\
  *          sum-of-squares for the solution in the i-th column is given\n\
  *          by the sum of squares of elements n+1:m in that column.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B. LDB >= max(1,max(M,N)).\n\
  *\n\
  *  S       (output) DOUBLE PRECISION array, dimension (min(M,N))\n\
  *          The singular values of A in decreasing order.\n\
  *          The condition number of A in the 2-norm = S(1)/S(min(m,n)).\n\
  *\n\
  *  RCOND   (input) DOUBLE PRECISION\n\
  *          RCOND is used to determine the effective rank of A.\n\
  *          Singular values S(i) <= RCOND*S(1) are treated as zero.\n\
  *          If RCOND < 0, machine precision is used instead.\n\
  *\n\
  *  RANK    (output) INTEGER\n\
  *          The effective rank of A, i.e., the number of singular values\n\
  *          which are greater than RCOND*S(1).\n\
  *\n\
  *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK. LWORK >= 1, and also:\n\
  *          LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )\n\
  *          For good performance, LWORK should generally be larger.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *          > 0:  the algorithm for computing the SVD failed to converge;\n\
  *                if INFO = i, i off-diagonal elements of an intermediate\n\
  *                bidiagonal form did not converge to zero.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"