1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
---
:name: dgeqpf
:md5sum: 357c7be8c28d16facf6f9fa20d73b074
:category: :subroutine
:arguments:
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- jpvt:
:type: integer
:intent: input/output
:dims:
- n
- tau:
:type: doublereal
:intent: output
:dims:
- MIN(m,n)
- work:
:type: doublereal
:intent: workspace
:dims:
- 3*n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DGEQPF( M, N, A, LDA, JPVT, TAU, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* This routine is deprecated and has been replaced by routine DGEQP3.\n\
*\n\
* DGEQPF computes a QR factorization with column pivoting of a\n\
* real M-by-N matrix A: A*P = Q*R.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix A. N >= 0\n\
*\n\
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
* On entry, the M-by-N matrix A.\n\
* On exit, the upper triangle of the array contains the\n\
* min(M,N)-by-N upper triangular matrix R; the elements\n\
* below the diagonal, together with the array TAU,\n\
* represent the orthogonal matrix Q as a product of\n\
* min(m,n) elementary reflectors.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* JPVT (input/output) INTEGER array, dimension (N)\n\
* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted\n\
* to the front of A*P (a leading column); if JPVT(i) = 0,\n\
* the i-th column of A is a free column.\n\
* On exit, if JPVT(i) = k, then the i-th column of A*P\n\
* was the k-th column of A.\n\
*\n\
* TAU (output) DOUBLE PRECISION array, dimension (min(M,N))\n\
* The scalar factors of the elementary reflectors.\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* The matrix Q is represented as a product of elementary reflectors\n\
*\n\
* Q = H(1) H(2) . . . H(n)\n\
*\n\
* Each H(i) has the form\n\
*\n\
* H = I - tau * v * v'\n\
*\n\
* where tau is a real scalar, and v is a real vector with\n\
* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i).\n\
*\n\
* The matrix P is represented in jpvt as follows: If\n\
* jpvt(j) = i\n\
* then the jth column of P is the ith canonical unit vector.\n\
*\n\
* Partial column norm updating strategy modified by\n\
* Z. Drmac and Z. Bujanovic, Dept. of Mathematics,\n\
* University of Zagreb, Croatia.\n\
* June 2010\n\
* For more details see LAPACK Working Note 176.\n\
*\n\
* =====================================================================\n\
*\n"
|