File: dgetrf

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (76 lines) | stat: -rwxr-xr-x 2,407 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
--- 
:name: dgetrf
:md5sum: a4dcbe6d74786df056780307768b0b99
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- ipiv: 
    :type: integer
    :intent: output
    :dims: 
    - MIN(m,n)
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DGETRF computes an LU factorization of a general M-by-N matrix A\n\
  *  using partial pivoting with row interchanges.\n\
  *\n\
  *  The factorization has the form\n\
  *     A = P * L * U\n\
  *  where P is a permutation matrix, L is lower triangular with unit\n\
  *  diagonal elements (lower trapezoidal if m > n), and U is upper\n\
  *  triangular (upper trapezoidal if m < n).\n\
  *\n\
  *  This is the right-looking Level 3 BLAS version of the algorithm.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A.  M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
  *          On entry, the M-by-N matrix to be factored.\n\
  *          On exit, the factors L and U from the factorization\n\
  *          A = P*L*U; the unit diagonal elements of L are not stored.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  IPIV    (output) INTEGER array, dimension (min(M,N))\n\
  *          The pivot indices; for 1 <= i <= min(M,N), row i of the\n\
  *          matrix was interchanged with row IPIV(i).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization\n\
  *                has been completed, but the factor U is exactly\n\
  *                singular, and division by zero will occur if it is used\n\
  *                to solve a system of equations.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"