1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
---
:name: dggglm
:md5sum: b132b24d18eb3c974ddf79f3c310f812
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- m:
:type: integer
:intent: input
- p:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input/output
:dims:
- lda
- m
- lda:
:type: integer
:intent: input
- b:
:type: doublereal
:intent: input/output
:dims:
- ldb
- p
- ldb:
:type: integer
:intent: input
- d:
:type: doublereal
:intent: input/output
:dims:
- n
- x:
:type: doublereal
:intent: output
:dims:
- m
- y:
:type: doublereal
:intent: output
:dims:
- p
- work:
:type: doublereal
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: m+n+p
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DGGGLM solves a general Gauss-Markov linear model (GLM) problem:\n\
*\n\
* minimize || y ||_2 subject to d = A*x + B*y\n\
* x\n\
*\n\
* where A is an N-by-M matrix, B is an N-by-P matrix, and d is a\n\
* given N-vector. It is assumed that M <= N <= M+P, and\n\
*\n\
* rank(A) = M and rank( A B ) = N.\n\
*\n\
* Under these assumptions, the constrained equation is always\n\
* consistent, and there is a unique solution x and a minimal 2-norm\n\
* solution y, which is obtained using a generalized QR factorization\n\
* of the matrices (A, B) given by\n\
*\n\
* A = Q*(R), B = Q*T*Z.\n\
* (0)\n\
*\n\
* In particular, if matrix B is square nonsingular, then the problem\n\
* GLM is equivalent to the following weighted linear least squares\n\
* problem\n\
*\n\
* minimize || inv(B)*(d-A*x) ||_2\n\
* x\n\
*\n\
* where inv(B) denotes the inverse of B.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The number of rows of the matrices A and B. N >= 0.\n\
*\n\
* M (input) INTEGER\n\
* The number of columns of the matrix A. 0 <= M <= N.\n\
*\n\
* P (input) INTEGER\n\
* The number of columns of the matrix B. P >= N-M.\n\
*\n\
* A (input/output) DOUBLE PRECISION array, dimension (LDA,M)\n\
* On entry, the N-by-M matrix A.\n\
* On exit, the upper triangular part of the array A contains\n\
* the M-by-M upper triangular matrix R.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* B (input/output) DOUBLE PRECISION array, dimension (LDB,P)\n\
* On entry, the N-by-P matrix B.\n\
* On exit, if N <= P, the upper triangle of the subarray\n\
* B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;\n\
* if N > P, the elements on and above the (N-P)th subdiagonal\n\
* contain the N-by-P upper trapezoidal matrix T.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* D (input/output) DOUBLE PRECISION array, dimension (N)\n\
* On entry, D is the left hand side of the GLM equation.\n\
* On exit, D is destroyed.\n\
*\n\
* X (output) DOUBLE PRECISION array, dimension (M)\n\
* Y (output) DOUBLE PRECISION array, dimension (P)\n\
* On exit, X and Y are the solutions of the GLM problem.\n\
*\n\
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK. LWORK >= max(1,N+M+P).\n\
* For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,\n\
* where NB is an upper bound for the optimal blocksizes for\n\
* DGEQRF, SGERQF, DORMQR and SORMRQ.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* = 1: the upper triangular factor R associated with A in the\n\
* generalized QR factorization of the pair (A, B) is\n\
* singular, so that rank(A) < M; the least squares\n\
* solution could not be computed.\n\
* = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal\n\
* factor T associated with B in the generalized QR\n\
* factorization of the pair (A, B) is singular, so that\n\
* rank( A B ) < N; the least squares solution could not\n\
* be computed.\n\
*\n\n\
* ===================================================================\n\
*\n"
|