1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
---
:name: dlaed0
:md5sum: 337ae89b96bbbde72236a7ce62eb8536
:category: :subroutine
:arguments:
- icompq:
:type: integer
:intent: input
- qsiz:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- d:
:type: doublereal
:intent: input/output
:dims:
- n
- e:
:type: doublereal
:intent: input
:dims:
- n-1
- q:
:type: doublereal
:intent: input/output
:dims:
- ldq
- n
- ldq:
:type: integer
:intent: input
- qstore:
:type: doublereal
:intent: workspace
:dims:
- ldqs
- n
- ldqs:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- "((icompq == 0) || (icompq == 1)) ? 1 + 3*n + 2*n*LG(n) + 2*pow(n,2) : icompq == 2 ? 4*n + pow(n,2) : 0"
- iwork:
:type: integer
:intent: workspace
:dims:
- "((icompq == 0) || (icompq == 1)) ? 6 + 6*n + 5*n*LG(n) : icompq == 2 ? 3 + 5*n : 0"
- info:
:type: integer
:intent: output
:substitutions:
ldqs: "icompq == 1 ? MAX(1,n) : 1"
:fortran_help: " SUBROUTINE DLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, WORK, IWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DLAED0 computes all eigenvalues and corresponding eigenvectors of a\n\
* symmetric tridiagonal matrix using the divide and conquer method.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* ICOMPQ (input) INTEGER\n\
* = 0: Compute eigenvalues only.\n\
* = 1: Compute eigenvectors of original dense symmetric matrix\n\
* also. On entry, Q contains the orthogonal matrix used\n\
* to reduce the original matrix to tridiagonal form.\n\
* = 2: Compute eigenvalues and eigenvectors of tridiagonal\n\
* matrix.\n\
*\n\
* QSIZ (input) INTEGER\n\
* The dimension of the orthogonal matrix used to reduce\n\
* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.\n\
*\n\
* N (input) INTEGER\n\
* The dimension of the symmetric tridiagonal matrix. N >= 0.\n\
*\n\
* D (input/output) DOUBLE PRECISION array, dimension (N)\n\
* On entry, the main diagonal of the tridiagonal matrix.\n\
* On exit, its eigenvalues.\n\
*\n\
* E (input) DOUBLE PRECISION array, dimension (N-1)\n\
* The off-diagonal elements of the tridiagonal matrix.\n\
* On exit, E has been destroyed.\n\
*\n\
* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)\n\
* On entry, Q must contain an N-by-N orthogonal matrix.\n\
* If ICOMPQ = 0 Q is not referenced.\n\
* If ICOMPQ = 1 On entry, Q is a subset of the columns of the\n\
* orthogonal matrix used to reduce the full\n\
* matrix to tridiagonal form corresponding to\n\
* the subset of the full matrix which is being\n\
* decomposed at this time.\n\
* If ICOMPQ = 2 On entry, Q will be the identity matrix.\n\
* On exit, Q contains the eigenvectors of the\n\
* tridiagonal matrix.\n\
*\n\
* LDQ (input) INTEGER\n\
* The leading dimension of the array Q. If eigenvectors are\n\
* desired, then LDQ >= max(1,N). In any case, LDQ >= 1.\n\
*\n\
* QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N)\n\
* Referenced only when ICOMPQ = 1. Used to store parts of\n\
* the eigenvector matrix when the updating matrix multiplies\n\
* take place.\n\
*\n\
* LDQS (input) INTEGER\n\
* The leading dimension of the array QSTORE. If ICOMPQ = 1,\n\
* then LDQS >= max(1,N). In any case, LDQS >= 1.\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array,\n\
* If ICOMPQ = 0 or 1, the dimension of WORK must be at least\n\
* 1 + 3*N + 2*N*lg N + 2*N**2\n\
* ( lg( N ) = smallest integer k\n\
* such that 2^k >= N )\n\
* If ICOMPQ = 2, the dimension of WORK must be at least\n\
* 4*N + N**2.\n\
*\n\
* IWORK (workspace) INTEGER array,\n\
* If ICOMPQ = 0 or 1, the dimension of IWORK must be at least\n\
* 6 + 6*N + 5*N*lg N.\n\
* ( lg( N ) = smallest integer k\n\
* such that 2^k >= N )\n\
* If ICOMPQ = 2, the dimension of IWORK must be at least\n\
* 3 + 5*N.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: The algorithm failed to compute an eigenvalue while\n\
* working on the submatrix lying in rows and columns\n\
* INFO/(N+1) through mod(INFO,N+1).\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Jeff Rutter, Computer Science Division, University of California\n\
* at Berkeley, USA\n\
*\n\
* =====================================================================\n\
*\n"
|