1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
---
:name: dlaed8
:md5sum: d8ce12a706721da54812694fab3a1bbe
:category: :subroutine
:arguments:
- icompq:
:type: integer
:intent: input
- k:
:type: integer
:intent: output
- n:
:type: integer
:intent: input
- qsiz:
:type: integer
:intent: input
- d:
:type: doublereal
:intent: input/output
:dims:
- n
- q:
:type: doublereal
:intent: input/output
:dims:
- "icompq==0 ? 0 : ldq"
- "icompq==0 ? 0 : n"
- ldq:
:type: integer
:intent: input
- indxq:
:type: integer
:intent: input
:dims:
- n
- rho:
:type: doublereal
:intent: input/output
- cutpnt:
:type: integer
:intent: input
- z:
:type: doublereal
:intent: input
:dims:
- n
- dlamda:
:type: doublereal
:intent: output
:dims:
- n
- q2:
:type: doublereal
:intent: output
:dims:
- "icompq==0 ? 0 : ldq2"
- "icompq==0 ? 0 : n"
- ldq2:
:type: integer
:intent: input
- w:
:type: doublereal
:intent: output
:dims:
- n
- perm:
:type: integer
:intent: output
:dims:
- n
- givptr:
:type: integer
:intent: output
- givcol:
:type: integer
:intent: output
:dims:
- "2"
- n
- givnum:
:type: doublereal
:intent: output
:dims:
- "2"
- n
- indxp:
:type: integer
:intent: workspace
:dims:
- n
- indx:
:type: integer
:intent: workspace
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions:
ldq2: MAX(1,n)
:fortran_help: " SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR, GIVCOL, GIVNUM, INDXP, INDX, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DLAED8 merges the two sets of eigenvalues together into a single\n\
* sorted set. Then it tries to deflate the size of the problem.\n\
* There are two ways in which deflation can occur: when two or more\n\
* eigenvalues are close together or if there is a tiny element in the\n\
* Z vector. For each such occurrence the order of the related secular\n\
* equation problem is reduced by one.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* ICOMPQ (input) INTEGER\n\
* = 0: Compute eigenvalues only.\n\
* = 1: Compute eigenvectors of original dense symmetric matrix\n\
* also. On entry, Q contains the orthogonal matrix used\n\
* to reduce the original matrix to tridiagonal form.\n\
*\n\
* K (output) INTEGER\n\
* The number of non-deflated eigenvalues, and the order of the\n\
* related secular equation.\n\
*\n\
* N (input) INTEGER\n\
* The dimension of the symmetric tridiagonal matrix. N >= 0.\n\
*\n\
* QSIZ (input) INTEGER\n\
* The dimension of the orthogonal matrix used to reduce\n\
* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.\n\
*\n\
* D (input/output) DOUBLE PRECISION array, dimension (N)\n\
* On entry, the eigenvalues of the two submatrices to be\n\
* combined. On exit, the trailing (N-K) updated eigenvalues\n\
* (those which were deflated) sorted into increasing order.\n\
*\n\
* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)\n\
* If ICOMPQ = 0, Q is not referenced. Otherwise,\n\
* on entry, Q contains the eigenvectors of the partially solved\n\
* system which has been previously updated in matrix\n\
* multiplies with other partially solved eigensystems.\n\
* On exit, Q contains the trailing (N-K) updated eigenvectors\n\
* (those which were deflated) in its last N-K columns.\n\
*\n\
* LDQ (input) INTEGER\n\
* The leading dimension of the array Q. LDQ >= max(1,N).\n\
*\n\
* INDXQ (input) INTEGER array, dimension (N)\n\
* The permutation which separately sorts the two sub-problems\n\
* in D into ascending order. Note that elements in the second\n\
* half of this permutation must first have CUTPNT added to\n\
* their values in order to be accurate.\n\
*\n\
* RHO (input/output) DOUBLE PRECISION\n\
* On entry, the off-diagonal element associated with the rank-1\n\
* cut which originally split the two submatrices which are now\n\
* being recombined.\n\
* On exit, RHO has been modified to the value required by\n\
* DLAED3.\n\
*\n\
* CUTPNT (input) INTEGER\n\
* The location of the last eigenvalue in the leading\n\
* sub-matrix. min(1,N) <= CUTPNT <= N.\n\
*\n\
* Z (input) DOUBLE PRECISION array, dimension (N)\n\
* On entry, Z contains the updating vector (the last row of\n\
* the first sub-eigenvector matrix and the first row of the\n\
* second sub-eigenvector matrix).\n\
* On exit, the contents of Z are destroyed by the updating\n\
* process.\n\
*\n\
* DLAMDA (output) DOUBLE PRECISION array, dimension (N)\n\
* A copy of the first K eigenvalues which will be used by\n\
* DLAED3 to form the secular equation.\n\
*\n\
* Q2 (output) DOUBLE PRECISION array, dimension (LDQ2,N)\n\
* If ICOMPQ = 0, Q2 is not referenced. Otherwise,\n\
* a copy of the first K eigenvectors which will be used by\n\
* DLAED7 in a matrix multiply (DGEMM) to update the new\n\
* eigenvectors.\n\
*\n\
* LDQ2 (input) INTEGER\n\
* The leading dimension of the array Q2. LDQ2 >= max(1,N).\n\
*\n\
* W (output) DOUBLE PRECISION array, dimension (N)\n\
* The first k values of the final deflation-altered z-vector and\n\
* will be passed to DLAED3.\n\
*\n\
* PERM (output) INTEGER array, dimension (N)\n\
* The permutations (from deflation and sorting) to be applied\n\
* to each eigenblock.\n\
*\n\
* GIVPTR (output) INTEGER\n\
* The number of Givens rotations which took place in this\n\
* subproblem.\n\
*\n\
* GIVCOL (output) INTEGER array, dimension (2, N)\n\
* Each pair of numbers indicates a pair of columns to take place\n\
* in a Givens rotation.\n\
*\n\
* GIVNUM (output) DOUBLE PRECISION array, dimension (2, N)\n\
* Each number indicates the S value to be used in the\n\
* corresponding Givens rotation.\n\
*\n\
* INDXP (workspace) INTEGER array, dimension (N)\n\
* The permutation used to place deflated values of D at the end\n\
* of the array. INDXP(1:K) points to the nondeflated D-values\n\
* and INDXP(K+1:N) points to the deflated eigenvalues.\n\
*\n\
* INDX (workspace) INTEGER array, dimension (N)\n\
* The permutation used to sort the contents of D into ascending\n\
* order.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Jeff Rutter, Computer Science Division, University of California\n\
* at Berkeley, USA\n\
*\n\
* =====================================================================\n\
*\n"
|