File: dlag2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (123 lines) | stat: -rwxr-xr-x 4,754 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
:name: dlag2
:md5sum: cb3cffe0121d3cdef959429272b11c8d
:category: :subroutine
:arguments:
- a:
    :type: doublereal
    :intent: input
    :dims:
    - lda
    - "2"
- lda:
    :type: integer
    :intent: input
- b:
    :type: doublereal
    :intent: input
    :dims:
    - ldb
    - "2"
- ldb:
    :type: integer
    :intent: input
- safmin:
    :type: doublereal
    :intent: input
- scale1:
    :type: doublereal
    :intent: output
- scale2:
    :type: doublereal
    :intent: output
- wr1:
    :type: doublereal
    :intent: output
- wr2:
    :type: doublereal
    :intent: output
- wi:
    :type: doublereal
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2, WI )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue\n\
  *  problem  A - w B, with scaling as necessary to avoid over-/underflow.\n\
  *\n\
  *  The scaling factor \"s\" results in a modified eigenvalue equation\n\
  *\n\
  *      s A - w B\n\
  *\n\
  *  where  s  is a non-negative scaling factor chosen so that  w,  w B,\n\
  *  and  s A  do not overflow and, if possible, do not underflow, either.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  A       (input) DOUBLE PRECISION array, dimension (LDA, 2)\n\
  *          On entry, the 2 x 2 matrix A.  It is assumed that its 1-norm\n\
  *          is less than 1/SAFMIN.  Entries less than\n\
  *          sqrt(SAFMIN)*norm(A) are subject to being treated as zero.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= 2.\n\
  *\n\
  *  B       (input) DOUBLE PRECISION array, dimension (LDB, 2)\n\
  *          On entry, the 2 x 2 upper triangular matrix B.  It is\n\
  *          assumed that the one-norm of B is less than 1/SAFMIN.  The\n\
  *          diagonals should be at least sqrt(SAFMIN) times the largest\n\
  *          element of B (in absolute value); if a diagonal is smaller\n\
  *          than that, then  +/- sqrt(SAFMIN) will be used instead of\n\
  *          that diagonal.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B.  LDB >= 2.\n\
  *\n\
  *  SAFMIN  (input) DOUBLE PRECISION\n\
  *          The smallest positive number s.t. 1/SAFMIN does not\n\
  *          overflow.  (This should always be DLAMCH('S') -- it is an\n\
  *          argument in order to avoid having to call DLAMCH frequently.)\n\
  *\n\
  *  SCALE1  (output) DOUBLE PRECISION\n\
  *          A scaling factor used to avoid over-/underflow in the\n\
  *          eigenvalue equation which defines the first eigenvalue.  If\n\
  *          the eigenvalues are complex, then the eigenvalues are\n\
  *          ( WR1  +/-  WI i ) / SCALE1  (which may lie outside the\n\
  *          exponent range of the machine), SCALE1=SCALE2, and SCALE1\n\
  *          will always be positive.  If the eigenvalues are real, then\n\
  *          the first (real) eigenvalue is  WR1 / SCALE1 , but this may\n\
  *          overflow or underflow, and in fact, SCALE1 may be zero or\n\
  *          less than the underflow threshold if the exact eigenvalue\n\
  *          is sufficiently large.\n\
  *\n\
  *  SCALE2  (output) DOUBLE PRECISION\n\
  *          A scaling factor used to avoid over-/underflow in the\n\
  *          eigenvalue equation which defines the second eigenvalue.  If\n\
  *          the eigenvalues are complex, then SCALE2=SCALE1.  If the\n\
  *          eigenvalues are real, then the second (real) eigenvalue is\n\
  *          WR2 / SCALE2 , but this may overflow or underflow, and in\n\
  *          fact, SCALE2 may be zero or less than the underflow\n\
  *          threshold if the exact eigenvalue is sufficiently large.\n\
  *\n\
  *  WR1     (output) DOUBLE PRECISION\n\
  *          If the eigenvalue is real, then WR1 is SCALE1 times the\n\
  *          eigenvalue closest to the (2,2) element of A B**(-1).  If the\n\
  *          eigenvalue is complex, then WR1=WR2 is SCALE1 times the real\n\
  *          part of the eigenvalues.\n\
  *\n\
  *  WR2     (output) DOUBLE PRECISION\n\
  *          If the eigenvalue is real, then WR2 is SCALE2 times the\n\
  *          other eigenvalue.  If the eigenvalue is complex, then\n\
  *          WR1=WR2 is SCALE1 times the real part of the eigenvalues.\n\
  *\n\
  *  WI      (output) DOUBLE PRECISION\n\
  *          If the eigenvalue is real, then WI is zero.  If the\n\
  *          eigenvalue is complex, then WI is SCALE1 times the imaginary\n\
  *          part of the eigenvalues.  WI will always be non-negative.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"