File: dlags2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (108 lines) | stat: -rwxr-xr-x 3,030 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
--- 
:name: dlags2
:md5sum: 2770fd9e10b95116026d93397ade969b
:category: :subroutine
:arguments: 
- upper: 
    :type: logical
    :intent: input
- a1: 
    :type: doublereal
    :intent: input
- a2: 
    :type: doublereal
    :intent: input
- a3: 
    :type: doublereal
    :intent: input
- b1: 
    :type: doublereal
    :intent: input
- b2: 
    :type: doublereal
    :intent: input
- b3: 
    :type: doublereal
    :intent: input
- csu: 
    :type: doublereal
    :intent: output
- snu: 
    :type: doublereal
    :intent: output
- csv: 
    :type: doublereal
    :intent: output
- snv: 
    :type: doublereal
    :intent: output
- csq: 
    :type: doublereal
    :intent: output
- snq: 
    :type: doublereal
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such\n\
  *  that if ( UPPER ) then\n\
  *\n\
  *            U'*A*Q = U'*( A1 A2 )*Q = ( x  0  )\n\
  *                        ( 0  A3 )     ( x  x  )\n\
  *  and\n\
  *            V'*B*Q = V'*( B1 B2 )*Q = ( x  0  )\n\
  *                        ( 0  B3 )     ( x  x  )\n\
  *\n\
  *  or if ( .NOT.UPPER ) then\n\
  *\n\
  *            U'*A*Q = U'*( A1 0  )*Q = ( x  x  )\n\
  *                        ( A2 A3 )     ( 0  x  )\n\
  *  and\n\
  *            V'*B*Q = V'*( B1 0  )*Q = ( x  x  )\n\
  *                        ( B2 B3 )     ( 0  x  )\n\
  *\n\
  *  The rows of the transformed A and B are parallel, where\n\
  *\n\
  *    U = (  CSU  SNU ), V = (  CSV SNV ), Q = (  CSQ   SNQ )\n\
  *        ( -SNU  CSU )      ( -SNV CSV )      ( -SNQ   CSQ )\n\
  *\n\
  *  Z' denotes the transpose of Z.\n\
  *\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPPER   (input) LOGICAL\n\
  *          = .TRUE.: the input matrices A and B are upper triangular.\n\
  *          = .FALSE.: the input matrices A and B are lower triangular.\n\
  *\n\
  *  A1      (input) DOUBLE PRECISION\n\
  *  A2      (input) DOUBLE PRECISION\n\
  *  A3      (input) DOUBLE PRECISION\n\
  *          On entry, A1, A2 and A3 are elements of the input 2-by-2\n\
  *          upper (lower) triangular matrix A.\n\
  *\n\
  *  B1      (input) DOUBLE PRECISION\n\
  *  B2      (input) DOUBLE PRECISION\n\
  *  B3      (input) DOUBLE PRECISION\n\
  *          On entry, B1, B2 and B3 are elements of the input 2-by-2\n\
  *          upper (lower) triangular matrix B.\n\
  *\n\
  *  CSU     (output) DOUBLE PRECISION\n\
  *  SNU     (output) DOUBLE PRECISION\n\
  *          The desired orthogonal matrix U.\n\
  *\n\
  *  CSV     (output) DOUBLE PRECISION\n\
  *  SNV     (output) DOUBLE PRECISION\n\
  *          The desired orthogonal matrix V.\n\
  *\n\
  *  CSQ     (output) DOUBLE PRECISION\n\
  *  SNQ     (output) DOUBLE PRECISION\n\
  *          The desired orthogonal matrix Q.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"