File: dlagtf

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (128 lines) | stat: -rwxr-xr-x 4,576 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
--- 
:name: dlagtf
:md5sum: 3a0ef4d4c7ee1d1045339e13d37e6877
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n
- lambda: 
    :type: doublereal
    :intent: input
- b: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n-1
- c: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - n-1
- tol: 
    :type: doublereal
    :intent: input
- d: 
    :type: doublereal
    :intent: output
    :dims: 
    - n-2
- in: 
    :type: integer
    :intent: output
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n\n\
  *  tridiagonal matrix and lambda is a scalar, as\n\
  *\n\
  *     T - lambda*I = PLU,\n\
  *\n\
  *  where P is a permutation matrix, L is a unit lower tridiagonal matrix\n\
  *  with at most one non-zero sub-diagonal elements per column and U is\n\
  *  an upper triangular matrix with at most two non-zero super-diagonal\n\
  *  elements per column.\n\
  *\n\
  *  The factorization is obtained by Gaussian elimination with partial\n\
  *  pivoting and implicit row scaling.\n\
  *\n\
  *  The parameter LAMBDA is included in the routine so that DLAGTF may\n\
  *  be used, in conjunction with DLAGTS, to obtain eigenvectors of T by\n\
  *  inverse iteration.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix T.\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION array, dimension (N)\n\
  *          On entry, A must contain the diagonal elements of T.\n\
  *\n\
  *          On exit, A is overwritten by the n diagonal elements of the\n\
  *          upper triangular matrix U of the factorization of T.\n\
  *\n\
  *  LAMBDA  (input) DOUBLE PRECISION\n\
  *          On entry, the scalar lambda.\n\
  *\n\
  *  B       (input/output) DOUBLE PRECISION array, dimension (N-1)\n\
  *          On entry, B must contain the (n-1) super-diagonal elements of\n\
  *          T.\n\
  *\n\
  *          On exit, B is overwritten by the (n-1) super-diagonal\n\
  *          elements of the matrix U of the factorization of T.\n\
  *\n\
  *  C       (input/output) DOUBLE PRECISION array, dimension (N-1)\n\
  *          On entry, C must contain the (n-1) sub-diagonal elements of\n\
  *          T.\n\
  *\n\
  *          On exit, C is overwritten by the (n-1) sub-diagonal elements\n\
  *          of the matrix L of the factorization of T.\n\
  *\n\
  *  TOL     (input) DOUBLE PRECISION\n\
  *          On entry, a relative tolerance used to indicate whether or\n\
  *          not the matrix (T - lambda*I) is nearly singular. TOL should\n\
  *          normally be chose as approximately the largest relative error\n\
  *          in the elements of T. For example, if the elements of T are\n\
  *          correct to about 4 significant figures, then TOL should be\n\
  *          set to about 5*10**(-4). If TOL is supplied as less than eps,\n\
  *          where eps is the relative machine precision, then the value\n\
  *          eps is used in place of TOL.\n\
  *\n\
  *  D       (output) DOUBLE PRECISION array, dimension (N-2)\n\
  *          On exit, D is overwritten by the (n-2) second super-diagonal\n\
  *          elements of the matrix U of the factorization of T.\n\
  *\n\
  *  IN      (output) INTEGER array, dimension (N)\n\
  *          On exit, IN contains details of the permutation matrix P. If\n\
  *          an interchange occurred at the kth step of the elimination,\n\
  *          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)\n\
  *          returns the smallest positive integer j such that\n\
  *\n\
  *             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,\n\
  *\n\
  *          where norm( A(j) ) denotes the sum of the absolute values of\n\
  *          the jth row of the matrix A. If no such j exists then IN(n)\n\
  *          is returned as zero. If IN(n) is returned as positive, then a\n\
  *          diagonal element of U is small, indicating that\n\
  *          (T - lambda*I) is singular or nearly singular,\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0   : successful exit\n\
  *          .lt. 0: if INFO = -k, the kth argument had an illegal value\n\
  *\n\n\
  * =====================================================================\n\
  *\n"