File: dlagv2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (128 lines) | stat: -rwxr-xr-x 3,791 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
--- 
:name: dlagv2
:md5sum: 0213b40436ec590dd32628d8b5e77774
:category: :subroutine
:arguments: 
- a: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - lda
    - "2"
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldb
    - "2"
- ldb: 
    :type: integer
    :intent: input
- alphar: 
    :type: doublereal
    :intent: output
    :dims: 
    - "2"
- alphai: 
    :type: doublereal
    :intent: output
    :dims: 
    - "2"
- beta: 
    :type: doublereal
    :intent: output
    :dims: 
    - "2"
- csl: 
    :type: doublereal
    :intent: output
- snl: 
    :type: doublereal
    :intent: output
- csr: 
    :type: doublereal
    :intent: output
- snr: 
    :type: doublereal
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLAGV2 computes the Generalized Schur factorization of a real 2-by-2\n\
  *  matrix pencil (A,B) where B is upper triangular. This routine\n\
  *  computes orthogonal (rotation) matrices given by CSL, SNL and CSR,\n\
  *  SNR such that\n\
  *\n\
  *  1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0\n\
  *     types), then\n\
  *\n\
  *     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]\n\
  *     [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]\n\
  *\n\
  *     [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]\n\
  *     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],\n\
  *\n\
  *  2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,\n\
  *     then\n\
  *\n\
  *     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]\n\
  *     [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]\n\
  *\n\
  *     [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]\n\
  *     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]\n\
  *\n\
  *     where b11 >= b22 > 0.\n\
  *\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, 2)\n\
  *          On entry, the 2 x 2 matrix A.\n\
  *          On exit, A is overwritten by the ``A-part'' of the\n\
  *          generalized Schur form.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          THe leading dimension of the array A.  LDA >= 2.\n\
  *\n\
  *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, 2)\n\
  *          On entry, the upper triangular 2 x 2 matrix B.\n\
  *          On exit, B is overwritten by the ``B-part'' of the\n\
  *          generalized Schur form.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          THe leading dimension of the array B.  LDB >= 2.\n\
  *\n\
  *  ALPHAR  (output) DOUBLE PRECISION array, dimension (2)\n\
  *  ALPHAI  (output) DOUBLE PRECISION array, dimension (2)\n\
  *  BETA    (output) DOUBLE PRECISION array, dimension (2)\n\
  *          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the\n\
  *          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may\n\
  *          be zero.\n\
  *\n\
  *  CSL     (output) DOUBLE PRECISION\n\
  *          The cosine of the left rotation matrix.\n\
  *\n\
  *  SNL     (output) DOUBLE PRECISION\n\
  *          The sine of the left rotation matrix.\n\
  *\n\
  *  CSR     (output) DOUBLE PRECISION\n\
  *          The cosine of the right rotation matrix.\n\
  *\n\
  *  SNR     (output) DOUBLE PRECISION\n\
  *          The sine of the right rotation matrix.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n\
  *\n\
  *  =====================================================================\n\
  *\n"