File: dlaneg

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (87 lines) | stat: -rwxr-xr-x 2,820 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
--- 
:name: dlaneg
:md5sum: c5a7742f33a7d96a4fed5f670646bf40
:category: :function
:type: integer
:arguments: 
- n: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: input
    :dims: 
    - n
- lld: 
    :type: doublereal
    :intent: input
    :dims: 
    - n-1
- sigma: 
    :type: doublereal
    :intent: input
- pivmin: 
    :type: doublereal
    :intent: input
- r: 
    :type: integer
    :intent: input
:substitutions: {}

:fortran_help: "      INTEGER FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLANEG computes the Sturm count, the number of negative pivots\n\
  *  encountered while factoring tridiagonal T - sigma I = L D L^T.\n\
  *  This implementation works directly on the factors without forming\n\
  *  the tridiagonal matrix T.  The Sturm count is also the number of\n\
  *  eigenvalues of T less than sigma.\n\
  *\n\
  *  This routine is called from DLARRB.\n\
  *\n\
  *  The current routine does not use the PIVMIN parameter but rather\n\
  *  requires IEEE-754 propagation of Infinities and NaNs.  This\n\
  *  routine also has no input range restrictions but does require\n\
  *  default exception handling such that x/0 produces Inf when x is\n\
  *  non-zero, and Inf/Inf produces NaN.  For more information, see:\n\
  *\n\
  *    Marques, Riedy, and Voemel, \"Benefits of IEEE-754 Features in\n\
  *    Modern Symmetric Tridiagonal Eigensolvers,\" SIAM Journal on\n\
  *    Scientific Computing, v28, n5, 2006.  DOI 10.1137/050641624\n\
  *    (Tech report version in LAWN 172 with the same title.)\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix.\n\
  *\n\
  *  D       (input) DOUBLE PRECISION array, dimension (N)\n\
  *          The N diagonal elements of the diagonal matrix D.\n\
  *\n\
  *  LLD     (input) DOUBLE PRECISION array, dimension (N-1)\n\
  *          The (N-1) elements L(i)*L(i)*D(i).\n\
  *\n\
  *  SIGMA   (input) DOUBLE PRECISION\n\
  *          Shift amount in T - sigma I = L D L^T.\n\
  *\n\
  *  PIVMIN  (input) DOUBLE PRECISION\n\
  *          The minimum pivot in the Sturm sequence.  May be used\n\
  *          when zero pivots are encountered on non-IEEE-754\n\
  *          architectures.\n\
  *\n\
  *  R       (input) INTEGER\n\
  *          The twist index for the twisted factorization that is used\n\
  *          for the negcount.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Osni Marques, LBNL/NERSC, USA\n\
  *     Christof Voemel, University of California, Berkeley, USA\n\
  *     Jason Riedy, University of California, Berkeley, USA\n\
  *\n\
  *  =====================================================================\n\
  *\n"