1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
---
:name: dlangb
:md5sum: 5a9301c71e52681db32faa73a8ccc40f
:category: :function
:type: doublereal
:arguments:
- norm:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- kl:
:type: integer
:intent: input
- ku:
:type: integer
:intent: input
- ab:
:type: doublereal
:intent: input
:dims:
- ldab
- n
- ldab:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- MAX(1,lwork)
:substitutions:
lwork: "lsame_(&norm,\"I\") ? n : 0"
:fortran_help: " DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB, WORK )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DLANGB returns the value of the one norm, or the Frobenius norm, or\n\
* the infinity norm, or the element of largest absolute value of an\n\
* n by n band matrix A, with kl sub-diagonals and ku super-diagonals.\n\
*\n\
* Description\n\
* ===========\n\
*\n\
* DLANGB returns the value\n\
*\n\
* DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'\n\
* (\n\
* ( norm1(A), NORM = '1', 'O' or 'o'\n\
* (\n\
* ( normI(A), NORM = 'I' or 'i'\n\
* (\n\
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'\n\
*\n\
* where norm1 denotes the one norm of a matrix (maximum column sum),\n\
* normI denotes the infinity norm of a matrix (maximum row sum) and\n\
* normF denotes the Frobenius norm of a matrix (square root of sum of\n\
* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* NORM (input) CHARACTER*1\n\
* Specifies the value to be returned in DLANGB as described\n\
* above.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0. When N = 0, DLANGB is\n\
* set to zero.\n\
*\n\
* KL (input) INTEGER\n\
* The number of sub-diagonals of the matrix A. KL >= 0.\n\
*\n\
* KU (input) INTEGER\n\
* The number of super-diagonals of the matrix A. KU >= 0.\n\
*\n\
* AB (input) DOUBLE PRECISION array, dimension (LDAB,N)\n\
* The band matrix A, stored in rows 1 to KL+KU+1. The j-th\n\
* column of A is stored in the j-th column of the array AB as\n\
* follows:\n\
* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).\n\
*\n\
* LDAB (input) INTEGER\n\
* The leading dimension of the array AB. LDAB >= KL+KU+1.\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),\n\
* where LWORK >= N when NORM = 'I'; otherwise, WORK is not\n\
* referenced.\n\
*\n\n\
* =====================================================================\n\
*\n\
*\n"
|