File: dlanv2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (84 lines) | stat: -rwxr-xr-x 2,476 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
--- 
:name: dlanv2
:md5sum: c7c0b03a8957e1ba328eea9560c78752
:category: :subroutine
:arguments: 
- a: 
    :type: doublereal
    :intent: input/output
- b: 
    :type: doublereal
    :intent: input/output
- c: 
    :type: doublereal
    :intent: input/output
- d: 
    :type: doublereal
    :intent: input/output
- rt1r: 
    :type: doublereal
    :intent: output
- rt1i: 
    :type: doublereal
    :intent: output
- rt2r: 
    :type: doublereal
    :intent: output
- rt2i: 
    :type: doublereal
    :intent: output
- cs: 
    :type: doublereal
    :intent: output
- sn: 
    :type: doublereal
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric\n\
  *  matrix in standard form:\n\
  *\n\
  *       [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]\n\
  *       [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]\n\
  *\n\
  *  where either\n\
  *  1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or\n\
  *  2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex\n\
  *  conjugate eigenvalues.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  A       (input/output) DOUBLE PRECISION\n\
  *  B       (input/output) DOUBLE PRECISION\n\
  *  C       (input/output) DOUBLE PRECISION\n\
  *  D       (input/output) DOUBLE PRECISION\n\
  *          On entry, the elements of the input matrix.\n\
  *          On exit, they are overwritten by the elements of the\n\
  *          standardised Schur form.\n\
  *\n\
  *  RT1R    (output) DOUBLE PRECISION\n\
  *  RT1I    (output) DOUBLE PRECISION\n\
  *  RT2R    (output) DOUBLE PRECISION\n\
  *  RT2I    (output) DOUBLE PRECISION\n\
  *          The real and imaginary parts of the eigenvalues. If the\n\
  *          eigenvalues are a complex conjugate pair, RT1I > 0.\n\
  *\n\
  *  CS      (output) DOUBLE PRECISION\n\
  *  SN      (output) DOUBLE PRECISION\n\
  *          Parameters of the rotation matrix.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Modified by V. Sima, Research Institute for Informatics, Bucharest,\n\
  *  Romania, to reduce the risk of cancellation errors,\n\
  *  when computing real eigenvalues, and to ensure, if possible, that\n\
  *  abs(RT1R) >= abs(RT2R).\n\
  *\n\
  *  =====================================================================\n\
  *\n"