1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
---
:name: dlaqr4
:md5sum: d8ba6b6e3c95815f0a98bf31c88ffd41
:category: :subroutine
:arguments:
- wantt:
:type: logical
:intent: input
- wantz:
:type: logical
:intent: input
- n:
:type: integer
:intent: input
- ilo:
:type: integer
:intent: input
- ihi:
:type: integer
:intent: input
- h:
:type: doublereal
:intent: input/output
:dims:
- ldh
- n
- ldh:
:type: integer
:intent: input
- wr:
:type: doublereal
:intent: output
:dims:
- ihi
- wi:
:type: doublereal
:intent: output
:dims:
- ihi
- iloz:
:type: integer
:intent: input
- ihiz:
:type: integer
:intent: input
- z:
:type: doublereal
:intent: input/output
:dims:
- ldz
- ihi
- ldz:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DLAQR4 computes the eigenvalues of a Hessenberg matrix H\n\
* and, optionally, the matrices T and Z from the Schur decomposition\n\
* H = Z T Z**T, where T is an upper quasi-triangular matrix (the\n\
* Schur form), and Z is the orthogonal matrix of Schur vectors.\n\
*\n\
* Optionally Z may be postmultiplied into an input orthogonal\n\
* matrix Q so that this routine can give the Schur factorization\n\
* of a matrix A which has been reduced to the Hessenberg form H\n\
* by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* WANTT (input) LOGICAL\n\
* = .TRUE. : the full Schur form T is required;\n\
* = .FALSE.: only eigenvalues are required.\n\
*\n\
* WANTZ (input) LOGICAL\n\
* = .TRUE. : the matrix of Schur vectors Z is required;\n\
* = .FALSE.: Schur vectors are not required.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix H. N .GE. 0.\n\
*\n\
* ILO (input) INTEGER\n\
* IHI (input) INTEGER\n\
* It is assumed that H is already upper triangular in rows\n\
* and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,\n\
* H(ILO,ILO-1) is zero. ILO and IHI are normally set by a\n\
* previous call to DGEBAL, and then passed to DGEHRD when the\n\
* matrix output by DGEBAL is reduced to Hessenberg form.\n\
* Otherwise, ILO and IHI should be set to 1 and N,\n\
* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.\n\
* If N = 0, then ILO = 1 and IHI = 0.\n\
*\n\
* H (input/output) DOUBLE PRECISION array, dimension (LDH,N)\n\
* On entry, the upper Hessenberg matrix H.\n\
* On exit, if INFO = 0 and WANTT is .TRUE., then H contains\n\
* the upper quasi-triangular matrix T from the Schur\n\
* decomposition (the Schur form); 2-by-2 diagonal blocks\n\
* (corresponding to complex conjugate pairs of eigenvalues)\n\
* are returned in standard form, with H(i,i) = H(i+1,i+1)\n\
* and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is\n\
* .FALSE., then the contents of H are unspecified on exit.\n\
* (The output value of H when INFO.GT.0 is given under the\n\
* description of INFO below.)\n\
*\n\
* This subroutine may explicitly set H(i,j) = 0 for i.GT.j and\n\
* j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.\n\
*\n\
* LDH (input) INTEGER\n\
* The leading dimension of the array H. LDH .GE. max(1,N).\n\
*\n\
* WR (output) DOUBLE PRECISION array, dimension (IHI)\n\
* WI (output) DOUBLE PRECISION array, dimension (IHI)\n\
* The real and imaginary parts, respectively, of the computed\n\
* eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)\n\
* and WI(ILO:IHI). If two eigenvalues are computed as a\n\
* complex conjugate pair, they are stored in consecutive\n\
* elements of WR and WI, say the i-th and (i+1)th, with\n\
* WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then\n\
* the eigenvalues are stored in the same order as on the\n\
* diagonal of the Schur form returned in H, with\n\
* WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal\n\
* block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and\n\
* WI(i+1) = -WI(i).\n\
*\n\
* ILOZ (input) INTEGER\n\
* IHIZ (input) INTEGER\n\
* Specify the rows of Z to which transformations must be\n\
* applied if WANTZ is .TRUE..\n\
* 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.\n\
*\n\
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI)\n\
* If WANTZ is .FALSE., then Z is not referenced.\n\
* If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is\n\
* replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the\n\
* orthogonal Schur factor of H(ILO:IHI,ILO:IHI).\n\
* (The output value of Z when INFO.GT.0 is given under\n\
* the description of INFO below.)\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. if WANTZ is .TRUE.\n\
* then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1.\n\
*\n\
* WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK\n\
* On exit, if LWORK = -1, WORK(1) returns an estimate of\n\
* the optimal value for LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK. LWORK .GE. max(1,N)\n\
* is sufficient, but LWORK typically as large as 6*N may\n\
* be required for optimal performance. A workspace query\n\
* to determine the optimal workspace size is recommended.\n\
*\n\
* If LWORK = -1, then DLAQR4 does a workspace query.\n\
* In this case, DLAQR4 checks the input parameters and\n\
* estimates the optimal workspace size for the given\n\
* values of N, ILO and IHI. The estimate is returned\n\
* in WORK(1). No error message related to LWORK is\n\
* issued by XERBLA. Neither H nor Z are accessed.\n\
*\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* .GT. 0: if INFO = i, DLAQR4 failed to compute all of\n\
* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR\n\
* and WI contain those eigenvalues which have been\n\
* successfully computed. (Failures are rare.)\n\
*\n\
* If INFO .GT. 0 and WANT is .FALSE., then on exit,\n\
* the remaining unconverged eigenvalues are the eigen-\n\
* values of the upper Hessenberg matrix rows and\n\
* columns ILO through INFO of the final, output\n\
* value of H.\n\
*\n\
* If INFO .GT. 0 and WANTT is .TRUE., then on exit\n\
*\n\
* (*) (initial value of H)*U = U*(final value of H)\n\
*\n\
* where U is an orthogonal matrix. The final\n\
* value of H is upper Hessenberg and quasi-triangular\n\
* in rows and columns INFO+1 through IHI.\n\
*\n\
* If INFO .GT. 0 and WANTZ is .TRUE., then on exit\n\
*\n\
* (final value of Z(ILO:IHI,ILOZ:IHIZ)\n\
* = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U\n\
*\n\
* where U is the orthogonal matrix in (*) (regard-\n\
* less of the value of WANTT.)\n\
*\n\
* If INFO .GT. 0 and WANTZ is .FALSE., then Z is not\n\
* accessed.\n\
*\n\n\
* ================================================================\n\
* Based on contributions by\n\
* Karen Braman and Ralph Byers, Department of Mathematics,\n\
* University of Kansas, USA\n\
*\n\
* ================================================================\n\
* References:\n\
* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR\n\
* Algorithm Part I: Maintaining Well Focused Shifts, and Level 3\n\
* Performance, SIAM Journal of Matrix Analysis, volume 23, pages\n\
* 929--947, 2002.\n\
*\n\
* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR\n\
* Algorithm Part II: Aggressive Early Deflation, SIAM Journal\n\
* of Matrix Analysis, volume 23, pages 948--973, 2002.\n\
*\n\
* ================================================================\n"
|