File: dlar2v

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (86 lines) | stat: -rwxr-xr-x 2,459 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
--- 
:name: dlar2v
:md5sum: 6fb47caf55cd693b64352d0bddea77e7
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- x: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - 1+(n-1)*incx
- y: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - 1+(n-1)*incx
- z: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - 1+(n-1)*incx
- incx: 
    :type: integer
    :intent: input
- c: 
    :type: doublereal
    :intent: input
    :dims: 
    - 1+(n-1)*incc
- s: 
    :type: doublereal
    :intent: input
    :dims: 
    - 1+(n-1)*incc
- incc: 
    :type: integer
    :intent: input
:substitutions: {}

:fortran_help: "      SUBROUTINE DLAR2V( N, X, Y, Z, INCX, C, S, INCC )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLAR2V applies a vector of real plane rotations from both sides to\n\
  *  a sequence of 2-by-2 real symmetric matrices, defined by the elements\n\
  *  of the vectors x, y and z. For i = 1,2,...,n\n\
  *\n\
  *     ( x(i)  z(i) ) := (  c(i)  s(i) ) ( x(i)  z(i) ) ( c(i) -s(i) )\n\
  *     ( z(i)  y(i) )    ( -s(i)  c(i) ) ( z(i)  y(i) ) ( s(i)  c(i) )\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of plane rotations to be applied.\n\
  *\n\
  *  X       (input/output) DOUBLE PRECISION array,\n\
  *                         dimension (1+(N-1)*INCX)\n\
  *          The vector x.\n\
  *\n\
  *  Y       (input/output) DOUBLE PRECISION array,\n\
  *                         dimension (1+(N-1)*INCX)\n\
  *          The vector y.\n\
  *\n\
  *  Z       (input/output) DOUBLE PRECISION array,\n\
  *                         dimension (1+(N-1)*INCX)\n\
  *          The vector z.\n\
  *\n\
  *  INCX    (input) INTEGER\n\
  *          The increment between elements of X, Y and Z. INCX > 0.\n\
  *\n\
  *  C       (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)\n\
  *          The cosines of the plane rotations.\n\
  *\n\
  *  S       (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)\n\
  *          The sines of the plane rotations.\n\
  *\n\
  *  INCC    (input) INTEGER\n\
  *          The increment between elements of C and S. INCC > 0.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n\
  *     .. Local Scalars ..\n      INTEGER            I, IC, IX\n      DOUBLE PRECISION   CI, SI, T1, T2, T3, T4, T5, T6, XI, YI, ZI\n\
  *     ..\n"