1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
---
:name: dlarrf
:md5sum: df72f10d35d5993e0a6caea1cd27a6a6
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- d:
:type: doublereal
:intent: input
:dims:
- n
- l:
:type: doublereal
:intent: input
:dims:
- n-1
- ld:
:type: doublereal
:intent: input
:dims:
- n-1
- clstrt:
:type: integer
:intent: input
- clend:
:type: integer
:intent: input
- w:
:type: doublereal
:intent: input
:dims:
- clend-clstrt+1
- wgap:
:type: doublereal
:intent: input/output
:dims:
- clend-clstrt+1
- werr:
:type: doublereal
:intent: input
:dims:
- clend-clstrt+1
- spdiam:
:type: doublereal
:intent: input
- clgapl:
:type: doublereal
:intent: input
- clgapr:
:type: doublereal
:intent: input
- pivmin:
:type: doublereal
:intent: input
- sigma:
:type: doublereal
:intent: output
- dplus:
:type: doublereal
:intent: output
:dims:
- n
- lplus:
:type: doublereal
:intent: output
:dims:
- n-1
- work:
:type: doublereal
:intent: workspace
:dims:
- 2*n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DLARRF( N, D, L, LD, CLSTRT, CLEND, W, WGAP, WERR, SPDIAM, CLGAPL, CLGAPR, PIVMIN, SIGMA, DPLUS, LPLUS, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* Given the initial representation L D L^T and its cluster of close\n\
* eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ...\n\
* W( CLEND ), DLARRF finds a new relatively robust representation\n\
* L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the\n\
* eigenvalues of L(+) D(+) L(+)^T is relatively isolated.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix (subblock, if the matrix split).\n\
*\n\
* D (input) DOUBLE PRECISION array, dimension (N)\n\
* The N diagonal elements of the diagonal matrix D.\n\
*\n\
* L (input) DOUBLE PRECISION array, dimension (N-1)\n\
* The (N-1) subdiagonal elements of the unit bidiagonal\n\
* matrix L.\n\
*\n\
* LD (input) DOUBLE PRECISION array, dimension (N-1)\n\
* The (N-1) elements L(i)*D(i).\n\
*\n\
* CLSTRT (input) INTEGER\n\
* The index of the first eigenvalue in the cluster.\n\
*\n\
* CLEND (input) INTEGER\n\
* The index of the last eigenvalue in the cluster.\n\
*\n\
* W (input) DOUBLE PRECISION array, dimension\n\
* dimension is >= (CLEND-CLSTRT+1)\n\
* The eigenvalue APPROXIMATIONS of L D L^T in ascending order.\n\
* W( CLSTRT ) through W( CLEND ) form the cluster of relatively\n\
* close eigenalues.\n\
*\n\
* WGAP (input/output) DOUBLE PRECISION array, dimension\n\
* dimension is >= (CLEND-CLSTRT+1)\n\
* The separation from the right neighbor eigenvalue in W.\n\
*\n\
* WERR (input) DOUBLE PRECISION array, dimension\n\
* dimension is >= (CLEND-CLSTRT+1)\n\
* WERR contain the semiwidth of the uncertainty\n\
* interval of the corresponding eigenvalue APPROXIMATION in W\n\
*\n\
* SPDIAM (input) DOUBLE PRECISION\n\
* estimate of the spectral diameter obtained from the\n\
* Gerschgorin intervals\n\
*\n\
* CLGAPL (input) DOUBLE PRECISION\n\
*\n\
* CLGAPR (input) DOUBLE PRECISION\n\
* absolute gap on each end of the cluster.\n\
* Set by the calling routine to protect against shifts too close\n\
* to eigenvalues outside the cluster.\n\
*\n\
* PIVMIN (input) DOUBLE PRECISION\n\
* The minimum pivot allowed in the Sturm sequence.\n\
*\n\
* SIGMA (output) DOUBLE PRECISION\n\
* The shift used to form L(+) D(+) L(+)^T.\n\
*\n\
* DPLUS (output) DOUBLE PRECISION array, dimension (N)\n\
* The N diagonal elements of the diagonal matrix D(+).\n\
*\n\
* LPLUS (output) DOUBLE PRECISION array, dimension (N-1)\n\
* The first (N-1) elements of LPLUS contain the subdiagonal\n\
* elements of the unit bidiagonal matrix L(+).\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (2*N)\n\
* Workspace.\n\
*\n\
* INFO (output) INTEGER\n\
* Signals processing OK (=0) or failure (=1)\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Beresford Parlett, University of California, Berkeley, USA\n\
* Jim Demmel, University of California, Berkeley, USA\n\
* Inderjit Dhillon, University of Texas, Austin, USA\n\
* Osni Marques, LBNL/NERSC, USA\n\
* Christof Voemel, University of California, Berkeley, USA\n\
*\n\
* =====================================================================\n\
*\n"
|