File: dlarrk

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (108 lines) | stat: -rwxr-xr-x 3,237 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
--- 
:name: dlarrk
:md5sum: 4e0b3e510031faaddb890af5e08e89a2
:category: :subroutine
:arguments: 
- n: 
    :type: integer
    :intent: input
- iw: 
    :type: integer
    :intent: input
- gl: 
    :type: doublereal
    :intent: input
- gu: 
    :type: doublereal
    :intent: input
- d: 
    :type: doublereal
    :intent: input
    :dims: 
    - n
- e2: 
    :type: doublereal
    :intent: input
    :dims: 
    - n-1
- pivmin: 
    :type: doublereal
    :intent: input
- reltol: 
    :type: doublereal
    :intent: input
- w: 
    :type: doublereal
    :intent: output
- werr: 
    :type: doublereal
    :intent: output
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DLARRK( N, IW, GL, GU, D, E2, PIVMIN, RELTOL, W, WERR, INFO)\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLARRK computes one eigenvalue of a symmetric tridiagonal\n\
  *  matrix T to suitable accuracy. This is an auxiliary code to be\n\
  *  called from DSTEMR.\n\
  *\n\
  *  To avoid overflow, the matrix must be scaled so that its\n\
  *  largest element is no greater than overflow**(1/2) *\n\
  *  underflow**(1/4) in absolute value, and for greatest\n\
  *  accuracy, it should not be much smaller than that.\n\
  *\n\
  *  See W. Kahan \"Accurate Eigenvalues of a Symmetric Tridiagonal\n\
  *  Matrix\", Report CS41, Computer Science Dept., Stanford\n\
  *  University, July 21, 1966.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the tridiagonal matrix T.  N >= 0.\n\
  *\n\
  *  IW      (input) INTEGER\n\
  *          The index of the eigenvalues to be returned.\n\
  *\n\
  *  GL      (input) DOUBLE PRECISION\n\
  *  GU      (input) DOUBLE PRECISION\n\
  *          An upper and a lower bound on the eigenvalue.\n\
  *\n\
  *  D       (input) DOUBLE PRECISION array, dimension (N)\n\
  *          The n diagonal elements of the tridiagonal matrix T.\n\
  *\n\
  *  E2      (input) DOUBLE PRECISION array, dimension (N-1)\n\
  *          The (n-1) squared off-diagonal elements of the tridiagonal matrix T.\n\
  *\n\
  *  PIVMIN  (input) DOUBLE PRECISION\n\
  *          The minimum pivot allowed in the Sturm sequence for T.\n\
  *\n\
  *  RELTOL  (input) DOUBLE PRECISION\n\
  *          The minimum relative width of an interval.  When an interval\n\
  *          is narrower than RELTOL times the larger (in\n\
  *          magnitude) endpoint, then it is considered to be\n\
  *          sufficiently small, i.e., converged.  Note: this should\n\
  *          always be at least radix*machine epsilon.\n\
  *\n\
  *  W       (output) DOUBLE PRECISION\n\
  *\n\
  *  WERR    (output) DOUBLE PRECISION\n\
  *          The error bound on the corresponding eigenvalue approximation\n\
  *          in W.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:       Eigenvalue converged\n\
  *          = -1:      Eigenvalue did NOT converge\n\
  *\n\
  *  Internal Parameters\n\
  *  ===================\n\
  *\n\
  *  FUDGE   DOUBLE PRECISION, default = 2\n\
  *          A \"fudge factor\" to widen the Gershgorin intervals.\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"