1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
---
:name: dlarz
:md5sum: 61bd58498447c9dba40be54132c17b25
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- l:
:type: integer
:intent: input
- v:
:type: doublereal
:intent: input
:dims:
- 1+(l-1)*abs(incv)
- incv:
:type: integer
:intent: input
- tau:
:type: doublereal
:intent: input
- c:
:type: doublereal
:intent: input/output
:dims:
- ldc
- n
- ldc:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- "lsame_(&side,\"L\") ? n : lsame_(&side,\"R\") ? m : 0"
:substitutions: {}
:fortran_help: " SUBROUTINE DLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DLARZ applies a real elementary reflector H to a real M-by-N\n\
* matrix C, from either the left or the right. H is represented in the\n\
* form\n\
*\n\
* H = I - tau * v * v'\n\
*\n\
* where tau is a real scalar and v is a real vector.\n\
*\n\
* If tau = 0, then H is taken to be the unit matrix.\n\
*\n\
*\n\
* H is a product of k elementary reflectors as returned by DTZRZF.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'L': form H * C\n\
* = 'R': form C * H\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix C.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix C.\n\
*\n\
* L (input) INTEGER\n\
* The number of entries of the vector V containing\n\
* the meaningful part of the Householder vectors.\n\
* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.\n\
*\n\
* V (input) DOUBLE PRECISION array, dimension (1+(L-1)*abs(INCV))\n\
* The vector v in the representation of H as returned by\n\
* DTZRZF. V is not used if TAU = 0.\n\
*\n\
* INCV (input) INTEGER\n\
* The increment between elements of v. INCV <> 0.\n\
*\n\
* TAU (input) DOUBLE PRECISION\n\
* The value tau in the representation of H.\n\
*\n\
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)\n\
* On entry, the M-by-N matrix C.\n\
* On exit, C is overwritten by the matrix H * C if SIDE = 'L',\n\
* or C * H if SIDE = 'R'.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C. LDC >= max(1,M).\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension\n\
* (N) if SIDE = 'L'\n\
* or (M) if SIDE = 'R'\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA\n\
*\n\
* =====================================================================\n\
*\n"
|