1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
---
:name: dlasd0
:md5sum: 469c67fd3b988986d8c9fe190b5a3db7
:category: :subroutine
:arguments:
- n:
:type: integer
:intent: input
- sqre:
:type: integer
:intent: input
- d:
:type: doublereal
:intent: input/output
:dims:
- n
- e:
:type: doublereal
:intent: input
:dims:
- m-1
- u:
:type: doublereal
:intent: output
:dims:
- ldu
- n
- ldu:
:type: integer
:intent: input
- vt:
:type: doublereal
:intent: output
:dims:
- ldvt
- m
- ldvt:
:type: integer
:intent: input
- smlsiz:
:type: integer
:intent: input
- iwork:
:type: integer
:intent: workspace
:dims:
- (8 * n)
- work:
:type: doublereal
:intent: workspace
:dims:
- (3 * pow(m,2) + 2 * m)
- info:
:type: integer
:intent: output
:substitutions:
m: "sqre == 0 ? n : sqre == 1 ? n+1 : 0"
ldvt: n
ldu: n
:fortran_help: " SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* Using a divide and conquer approach, DLASD0 computes the singular\n\
* value decomposition (SVD) of a real upper bidiagonal N-by-M\n\
* matrix B with diagonal D and offdiagonal E, where M = N + SQRE.\n\
* The algorithm computes orthogonal matrices U and VT such that\n\
* B = U * S * VT. The singular values S are overwritten on D.\n\
*\n\
* A related subroutine, DLASDA, computes only the singular values,\n\
* and optionally, the singular vectors in compact form.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* N (input) INTEGER\n\
* On entry, the row dimension of the upper bidiagonal matrix.\n\
* This is also the dimension of the main diagonal array D.\n\
*\n\
* SQRE (input) INTEGER\n\
* Specifies the column dimension of the bidiagonal matrix.\n\
* = 0: The bidiagonal matrix has column dimension M = N;\n\
* = 1: The bidiagonal matrix has column dimension M = N+1;\n\
*\n\
* D (input/output) DOUBLE PRECISION array, dimension (N)\n\
* On entry D contains the main diagonal of the bidiagonal\n\
* matrix.\n\
* On exit D, if INFO = 0, contains its singular values.\n\
*\n\
* E (input) DOUBLE PRECISION array, dimension (M-1)\n\
* Contains the subdiagonal entries of the bidiagonal matrix.\n\
* On exit, E has been destroyed.\n\
*\n\
* U (output) DOUBLE PRECISION array, dimension at least (LDQ, N)\n\
* On exit, U contains the left singular vectors.\n\
*\n\
* LDU (input) INTEGER\n\
* On entry, leading dimension of U.\n\
*\n\
* VT (output) DOUBLE PRECISION array, dimension at least (LDVT, M)\n\
* On exit, VT' contains the right singular vectors.\n\
*\n\
* LDVT (input) INTEGER\n\
* On entry, leading dimension of VT.\n\
*\n\
* SMLSIZ (input) INTEGER\n\
* On entry, maximum size of the subproblems at the\n\
* bottom of the computation tree.\n\
*\n\
* IWORK (workspace) INTEGER work array.\n\
* Dimension must be at least (8 * N)\n\
*\n\
* WORK (workspace) DOUBLE PRECISION work array.\n\
* Dimension must be at least (3 * M**2 + 2 * M)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: if INFO = 1, a singular value did not converge\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Ming Gu and Huan Ren, Computer Science Division, University of\n\
* California at Berkeley, USA\n\
*\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n INTEGER I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,\n $ J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,\n $ NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI\n DOUBLE PRECISION ALPHA, BETA\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL DLASD1, DLASDQ, DLASDT, XERBLA\n\
* ..\n"
|