File: dlasd3

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (213 lines) | stat: -rwxr-xr-x 6,445 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
--- 
:name: dlasd3
:md5sum: eea845f53351b22e245c27f4d81cd078
:category: :subroutine
:arguments: 
- nl: 
    :type: integer
    :intent: input
- nr: 
    :type: integer
    :intent: input
- sqre: 
    :type: integer
    :intent: input
- k: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: output
    :dims: 
    - k
- q: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - ldq
    - k
- ldq: 
    :type: integer
    :intent: input
- dsigma: 
    :type: doublereal
    :intent: input
    :dims: 
    - k
- u: 
    :type: doublereal
    :intent: output
    :dims: 
    - ldu
    - n
- ldu: 
    :type: integer
    :intent: input
- u2: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldu2
    - n
- ldu2: 
    :type: integer
    :intent: input
- vt: 
    :type: doublereal
    :intent: output
    :dims: 
    - ldvt
    - m
- ldvt: 
    :type: integer
    :intent: input
- vt2: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldvt2
    - n
- ldvt2: 
    :type: integer
    :intent: input
- idxc: 
    :type: integer
    :intent: input
    :dims: 
    - n
- ctot: 
    :type: integer
    :intent: input
    :dims: 
    - "4"
- z: 
    :type: doublereal
    :intent: input
    :dims: 
    - k
- info: 
    :type: integer
    :intent: output
:substitutions: 
  m: n + sqre
  ldq: k
  n: nl + nr + 1
  ldu2: n
  ldvt: n
  ldvt2: n
  ldu: n
:fortran_help: "      SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLASD3 finds all the square roots of the roots of the secular\n\
  *  equation, as defined by the values in D and Z.  It makes the\n\
  *  appropriate calls to DLASD4 and then updates the singular\n\
  *  vectors by matrix multiplication.\n\
  *\n\
  *  This code makes very mild assumptions about floating point\n\
  *  arithmetic. It will work on machines with a guard digit in\n\
  *  add/subtract, or on those binary machines without guard digits\n\
  *  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.\n\
  *  It could conceivably fail on hexadecimal or decimal machines\n\
  *  without guard digits, but we know of none.\n\
  *\n\
  *  DLASD3 is called from DLASD1.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  NL     (input) INTEGER\n\
  *         The row dimension of the upper block.  NL >= 1.\n\
  *\n\
  *  NR     (input) INTEGER\n\
  *         The row dimension of the lower block.  NR >= 1.\n\
  *\n\
  *  SQRE   (input) INTEGER\n\
  *         = 0: the lower block is an NR-by-NR square matrix.\n\
  *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.\n\
  *\n\
  *         The bidiagonal matrix has N = NL + NR + 1 rows and\n\
  *         M = N + SQRE >= N columns.\n\
  *\n\
  *  K      (input) INTEGER\n\
  *         The size of the secular equation, 1 =< K = < N.\n\
  *\n\
  *  D      (output) DOUBLE PRECISION array, dimension(K)\n\
  *         On exit the square roots of the roots of the secular equation,\n\
  *         in ascending order.\n\
  *\n\
  *  Q      (workspace) DOUBLE PRECISION array,\n\
  *                     dimension at least (LDQ,K).\n\
  *\n\
  *  LDQ    (input) INTEGER\n\
  *         The leading dimension of the array Q.  LDQ >= K.\n\
  *\n\
  *  DSIGMA (input) DOUBLE PRECISION array, dimension(K)\n\
  *         The first K elements of this array contain the old roots\n\
  *         of the deflated updating problem.  These are the poles\n\
  *         of the secular equation.\n\
  *\n\
  *  U      (output) DOUBLE PRECISION array, dimension (LDU, N)\n\
  *         The last N - K columns of this matrix contain the deflated\n\
  *         left singular vectors.\n\
  *\n\
  *  LDU    (input) INTEGER\n\
  *         The leading dimension of the array U.  LDU >= N.\n\
  *\n\
  *  U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N)\n\
  *         The first K columns of this matrix contain the non-deflated\n\
  *         left singular vectors for the split problem.\n\
  *\n\
  *  LDU2   (input) INTEGER\n\
  *         The leading dimension of the array U2.  LDU2 >= N.\n\
  *\n\
  *  VT     (output) DOUBLE PRECISION array, dimension (LDVT, M)\n\
  *         The last M - K columns of VT' contain the deflated\n\
  *         right singular vectors.\n\
  *\n\
  *  LDVT   (input) INTEGER\n\
  *         The leading dimension of the array VT.  LDVT >= N.\n\
  *\n\
  *  VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)\n\
  *         The first K columns of VT2' contain the non-deflated\n\
  *         right singular vectors for the split problem.\n\
  *\n\
  *  LDVT2  (input) INTEGER\n\
  *         The leading dimension of the array VT2.  LDVT2 >= N.\n\
  *\n\
  *  IDXC   (input) INTEGER array, dimension ( N )\n\
  *         The permutation used to arrange the columns of U (and rows of\n\
  *         VT) into three groups:  the first group contains non-zero\n\
  *         entries only at and above (or before) NL +1; the second\n\
  *         contains non-zero entries only at and below (or after) NL+2;\n\
  *         and the third is dense. The first column of U and the row of\n\
  *         VT are treated separately, however.\n\
  *\n\
  *         The rows of the singular vectors found by DLASD4\n\
  *         must be likewise permuted before the matrix multiplies can\n\
  *         take place.\n\
  *\n\
  *  CTOT   (input) INTEGER array, dimension ( 4 )\n\
  *         A count of the total number of the various types of columns\n\
  *         in U (or rows in VT), as described in IDXC. The fourth column\n\
  *         type is any column which has been deflated.\n\
  *\n\
  *  Z      (input) DOUBLE PRECISION array, dimension (K)\n\
  *         The first K elements of this array contain the components\n\
  *         of the deflation-adjusted updating row vector.\n\
  *\n\
  *  INFO   (output) INTEGER\n\
  *         = 0:  successful exit.\n\
  *         < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *         > 0:  if INFO = 1, a singular value did not converge\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Ming Gu and Huan Ren, Computer Science Division, University of\n\
  *     California at Berkeley, USA\n\
  *\n\
  *  =====================================================================\n\
  *\n"