File: dlasd8

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (144 lines) | stat: -rwxr-xr-x 4,814 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
--- 
:name: dlasd8
:md5sum: da4e64c91be87e67d70f49ec5f695f5e
:category: :subroutine
:arguments: 
- icompq: 
    :type: integer
    :intent: input
- k: 
    :type: integer
    :intent: input
- d: 
    :type: doublereal
    :intent: output
    :dims: 
    - k
- z: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - k
- vf: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - k
- vl: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - k
- difl: 
    :type: doublereal
    :intent: output
    :dims: 
    - k
- difr: 
    :type: doublereal
    :intent: output
    :dims: 
    - "icompq == 1 ? lddifr : icompq == 0 ? k : 0"
    - "icompq == 1 ? 2 : 0"
- lddifr: 
    :type: integer
    :intent: input
- dsigma: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - k
- work: 
    :type: doublereal
    :intent: workspace
    :dims: 
    - 3 * k
- info: 
    :type: integer
    :intent: output
:substitutions: 
  lddifr: k
:fortran_help: "      SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR, DSIGMA, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DLASD8 finds the square roots of the roots of the secular equation,\n\
  *  as defined by the values in DSIGMA and Z. It makes the appropriate\n\
  *  calls to DLASD4, and stores, for each  element in D, the distance\n\
  *  to its two nearest poles (elements in DSIGMA). It also updates\n\
  *  the arrays VF and VL, the first and last components of all the\n\
  *  right singular vectors of the original bidiagonal matrix.\n\
  *\n\
  *  DLASD8 is called from DLASD6.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  ICOMPQ  (input) INTEGER\n\
  *          Specifies whether singular vectors are to be computed in\n\
  *          factored form in the calling routine:\n\
  *          = 0: Compute singular values only.\n\
  *          = 1: Compute singular vectors in factored form as well.\n\
  *\n\
  *  K       (input) INTEGER\n\
  *          The number of terms in the rational function to be solved\n\
  *          by DLASD4.  K >= 1.\n\
  *\n\
  *  D       (output) DOUBLE PRECISION array, dimension ( K )\n\
  *          On output, D contains the updated singular values.\n\
  *\n\
  *  Z       (input/output) DOUBLE PRECISION array, dimension ( K )\n\
  *          On entry, the first K elements of this array contain the\n\
  *          components of the deflation-adjusted updating row vector.\n\
  *          On exit, Z is updated.\n\
  *\n\
  *  VF      (input/output) DOUBLE PRECISION array, dimension ( K )\n\
  *          On entry, VF contains  information passed through DBEDE8.\n\
  *          On exit, VF contains the first K components of the first\n\
  *          components of all right singular vectors of the bidiagonal\n\
  *          matrix.\n\
  *\n\
  *  VL      (input/output) DOUBLE PRECISION array, dimension ( K )\n\
  *          On entry, VL contains  information passed through DBEDE8.\n\
  *          On exit, VL contains the first K components of the last\n\
  *          components of all right singular vectors of the bidiagonal\n\
  *          matrix.\n\
  *\n\
  *  DIFL    (output) DOUBLE PRECISION array, dimension ( K )\n\
  *          On exit, DIFL(I) = D(I) - DSIGMA(I).\n\
  *\n\
  *  DIFR    (output) DOUBLE PRECISION array,\n\
  *                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and\n\
  *                   dimension ( K ) if ICOMPQ = 0.\n\
  *          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not\n\
  *          defined and will not be referenced.\n\
  *\n\
  *          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the\n\
  *          normalizing factors for the right singular vector matrix.\n\
  *\n\
  *  LDDIFR  (input) INTEGER\n\
  *          The leading dimension of DIFR, must be at least K.\n\
  *\n\
  *  DSIGMA  (input/output) DOUBLE PRECISION array, dimension ( K )\n\
  *          On entry, the first K elements of this array contain the old\n\
  *          roots of the deflated updating problem.  These are the poles\n\
  *          of the secular equation.\n\
  *          On exit, the elements of DSIGMA may be very slightly altered\n\
  *          in value.\n\
  *\n\
  *  WORK    (workspace) DOUBLE PRECISION array, dimension at least 3 * K\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit.\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *          > 0:  if INFO = 1, a singular value did not converge\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  Based on contributions by\n\
  *     Ming Gu and Huan Ren, Computer Science Division, University of\n\
  *     California at Berkeley, USA\n\
  *\n\
  *  =====================================================================\n\
  *\n"