1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
---
:name: dorcsd
:md5sum: 16a44e6711210545e42e19e9eb2e970f
:category: :subroutine
:arguments:
- jobu1:
:type: char
:intent: input
- jobu2:
:type: char
:intent: input
- jobv1t:
:type: char
:intent: input
- jobv2t:
:type: char
:intent: input
- trans:
:type: char
:intent: input
- signs:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- p:
:type: integer
:intent: input
- q:
:type: integer
:intent: input
- x11:
:type: doublereal
:intent: input
:dims:
- ldx11
- q
- ldx11:
:type: integer
:intent: input
- x12:
:type: doublereal
:intent: input
:dims:
- ldx12
- m-q
- ldx12:
:type: integer
:intent: input
- x21:
:type: doublereal
:intent: input
:dims:
- ldx21
- q
- ldx21:
:type: integer
:intent: input
- x22:
:type: doublereal
:intent: input
:dims:
- ldx22
- m-q
- ldx22:
:type: integer
:intent: input
- theta:
:type: doublereal
:intent: output
:dims:
- MIN(MIN(MIN(p,m-p),q),m-q)
- u1:
:type: doublereal
:intent: output
:dims:
- p
- ldu1:
:type: integer
:intent: input
- u2:
:type: doublereal
:intent: output
:dims:
- m-p
- ldu2:
:type: integer
:intent: input
- v1t:
:type: doublereal
:intent: output
:dims:
- q
- ldv1t:
:type: integer
:intent: input
- v2t:
:type: doublereal
:intent: output
:dims:
- m-q
- ldv2t:
:type: integer
:intent: input
- work:
:type: doublereal
:intent: workspace
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
- iwork:
:type: integer
:intent: workspace
:dims:
- m-q
- info:
:type: integer
:intent: output
:substitutions:
ldv2t: "lsame_(&jobv2t,\"Y\") ? MAX(1,m-q) : 0"
ldv1t: "lsame_(&jobv1t,\"Y\") ? MAX(1,q) : 0"
ldu1: "lsame_(&jobu1,\"Y\") ? MAX(1,p) : 0"
ldu2: "lsame_(&jobu2,\"Y\") ? MAX(1,m-p) : 0"
p: ldx11
ldx12: p
ldx21: p
ldx22: p
:fortran_help: " RECURSIVE SUBROUTINE DORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, WORK, LWORK, IWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DORCSD computes the CS decomposition of an M-by-M partitioned\n\
* orthogonal matrix X:\n\
*\n\
* [ I 0 0 | 0 0 0 ]\n\
* [ 0 C 0 | 0 -S 0 ]\n\
* [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T\n\
* X = [-----------] = [---------] [---------------------] [---------] .\n\
* [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ]\n\
* [ 0 S 0 | 0 C 0 ]\n\
* [ 0 0 I | 0 0 0 ]\n\
*\n\
* X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P,\n\
* (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are\n\
* R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in\n\
* which R = MIN(P,M-P,Q,M-Q).\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBU1 (input) CHARACTER\n\
* = 'Y': U1 is computed;\n\
* otherwise: U1 is not computed.\n\
*\n\
* JOBU2 (input) CHARACTER\n\
* = 'Y': U2 is computed;\n\
* otherwise: U2 is not computed.\n\
*\n\
* JOBV1T (input) CHARACTER\n\
* = 'Y': V1T is computed;\n\
* otherwise: V1T is not computed.\n\
*\n\
* JOBV2T (input) CHARACTER\n\
* = 'Y': V2T is computed;\n\
* otherwise: V2T is not computed.\n\
*\n\
* TRANS (input) CHARACTER\n\
* = 'T': X, U1, U2, V1T, and V2T are stored in row-major\n\
* order;\n\
* otherwise: X, U1, U2, V1T, and V2T are stored in column-\n\
* major order.\n\
*\n\
* SIGNS (input) CHARACTER\n\
* = 'O': The lower-left block is made nonpositive (the\n\
* \"other\" convention);\n\
* otherwise: The upper-right block is made nonpositive (the\n\
* \"default\" convention).\n\
*\n\
* M (input) INTEGER\n\
* The number of rows and columns in X.\n\
*\n\
* P (input) INTEGER\n\
* The number of rows in X11 and X12. 0 <= P <= M.\n\
*\n\
* Q (input) INTEGER\n\
* The number of columns in X11 and X21. 0 <= Q <= M.\n\
*\n\
* X (input/workspace) DOUBLE PRECISION array, dimension (LDX,M)\n\
* On entry, the orthogonal matrix whose CSD is desired.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of X. LDX >= MAX(1,M).\n\
*\n\
* THETA (output) DOUBLE PRECISION array, dimension (R), in which R =\n\
* MIN(P,M-P,Q,M-Q).\n\
* C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and\n\
* S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).\n\
*\n\
* U1 (output) DOUBLE PRECISION array, dimension (P)\n\
* If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.\n\
*\n\
* LDU1 (input) INTEGER\n\
* The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=\n\
* MAX(1,P).\n\
*\n\
* U2 (output) DOUBLE PRECISION array, dimension (M-P)\n\
* If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal\n\
* matrix U2.\n\
*\n\
* LDU2 (input) INTEGER\n\
* The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=\n\
* MAX(1,M-P).\n\
*\n\
* V1T (output) DOUBLE PRECISION array, dimension (Q)\n\
* If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal\n\
* matrix V1**T.\n\
*\n\
* LDV1T (input) INTEGER\n\
* The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=\n\
* MAX(1,Q).\n\
*\n\
* V2T (output) DOUBLE PRECISION array, dimension (M-Q)\n\
* If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal\n\
* matrix V2**T.\n\
*\n\
* LDV2T (input) INTEGER\n\
* The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=\n\
* MAX(1,M-Q).\n\
*\n\
* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
* If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),\n\
* ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),\n\
* define the matrix in intermediate bidiagonal-block form\n\
* remaining after nonconvergence. INFO specifies the number\n\
* of nonzero PHI's.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the work array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* IWORK (workspace) INTEGER array, dimension (M-Q)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: DBBCSD did not converge. See the description of WORK\n\
* above for details.\n\
*\n\
* Reference\n\
* =========\n\
*\n\
* [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.\n\
* Algorithms, 50(1):33-65, 2009.\n\
*\n\n\
* ===================================================================\n\
*\n"
|