File: dormql

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (143 lines) | stat: -rwxr-xr-x 4,448 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
--- 
:name: dormql
:md5sum: 91204df0ad361c3d664f21c97a977882
:category: :subroutine
:arguments: 
- side: 
    :type: char
    :intent: input
- trans: 
    :type: char
    :intent: input
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- k: 
    :type: integer
    :intent: input
- a: 
    :type: doublereal
    :intent: input
    :dims: 
    - lda
    - k
- lda: 
    :type: integer
    :intent: input
- tau: 
    :type: doublereal
    :intent: input
    :dims: 
    - k
- c: 
    :type: doublereal
    :intent: input/output
    :dims: 
    - ldc
    - n
- ldc: 
    :type: integer
    :intent: input
- work: 
    :type: doublereal
    :intent: output
    :dims: 
    - MAX(1,lwork)
- lwork: 
    :type: integer
    :intent: input
    :option: true
    :default: "lsame_(&side,\"L\") ? n : lsame_(&side,\"R\") ? m : 0"
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE DORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  DORMQL overwrites the general real M-by-N matrix C with\n\
  *\n\
  *                  SIDE = 'L'     SIDE = 'R'\n\
  *  TRANS = 'N':      Q * C          C * Q\n\
  *  TRANS = 'T':      Q**T * C       C * Q**T\n\
  *\n\
  *  where Q is a real orthogonal matrix defined as the product of k\n\
  *  elementary reflectors\n\
  *\n\
  *        Q = H(k) . . . H(2) H(1)\n\
  *\n\
  *  as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N\n\
  *  if SIDE = 'R'.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  SIDE    (input) CHARACTER*1\n\
  *          = 'L': apply Q or Q**T from the Left;\n\
  *          = 'R': apply Q or Q**T from the Right.\n\
  *\n\
  *  TRANS   (input) CHARACTER*1\n\
  *          = 'N':  No transpose, apply Q;\n\
  *          = 'T':  Transpose, apply Q**T.\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix C. M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix C. N >= 0.\n\
  *\n\
  *  K       (input) INTEGER\n\
  *          The number of elementary reflectors whose product defines\n\
  *          the matrix Q.\n\
  *          If SIDE = 'L', M >= K >= 0;\n\
  *          if SIDE = 'R', N >= K >= 0.\n\
  *\n\
  *  A       (input) DOUBLE PRECISION array, dimension (LDA,K)\n\
  *          The i-th column must contain the vector which defines the\n\
  *          elementary reflector H(i), for i = 1,2,...,k, as returned by\n\
  *          DGEQLF in the last k columns of its array argument A.\n\
  *          A is modified by the routine but restored on exit.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.\n\
  *          If SIDE = 'L', LDA >= max(1,M);\n\
  *          if SIDE = 'R', LDA >= max(1,N).\n\
  *\n\
  *  TAU     (input) DOUBLE PRECISION array, dimension (K)\n\
  *          TAU(i) must contain the scalar factor of the elementary\n\
  *          reflector H(i), as returned by DGEQLF.\n\
  *\n\
  *  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)\n\
  *          On entry, the M-by-N matrix C.\n\
  *          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.\n\
  *\n\
  *  LDC     (input) INTEGER\n\
  *          The leading dimension of the array C. LDC >= max(1,M).\n\
  *\n\
  *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n\
  *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
  *\n\
  *  LWORK   (input) INTEGER\n\
  *          The dimension of the array WORK.\n\
  *          If SIDE = 'L', LWORK >= max(1,N);\n\
  *          if SIDE = 'R', LWORK >= max(1,M).\n\
  *          For optimum performance LWORK >= N*NB if SIDE = 'L', and\n\
  *          LWORK >= M*NB if SIDE = 'R', where NB is the optimal\n\
  *          blocksize.\n\
  *\n\
  *          If LWORK = -1, then a workspace query is assumed; the routine\n\
  *          only calculates the optimal size of the WORK array, returns\n\
  *          this value as the first entry of the WORK array, and no error\n\
  *          message related to LWORK is issued by XERBLA.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  =====================================================================\n\
  *\n"