1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
---
:name: dpotri
:md5sum: 2c5bbee2b4cacacf2af6cf4a23801249
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: doublereal
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE DPOTRI( UPLO, N, A, LDA, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* DPOTRI computes the inverse of a real symmetric positive definite\n\
* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T\n\
* computed by DPOTRF.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n\
* On entry, the triangular factor U or L from the Cholesky\n\
* factorization A = U**T*U or A = L*L**T, as computed by\n\
* DPOTRF.\n\
* On exit, the upper or lower triangle of the (symmetric)\n\
* inverse of A, overwriting the input factor U or L.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, the (i,i) element of the factor U or L is\n\
* zero, and the inverse could not be computed.\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL DLAUUM, DTRTRI, XERBLA\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC MAX\n\
* ..\n"
|